Workout 6 Solutions

Peter S. Simon

January, 2004

Problem 1

The letters P, Q, R, S and T have replaced digits in the equation $P 4 Q+2 R 5=S 1 T$. Given that each digit 1 through 9 is used exactly once in the equation, which digit must Q represent?

Problem 1

The letters P, Q, R, S and T have replaced digits in the equation $P 4 Q+2 R 5=S 1 T$. Given that each digit 1 through 9 is used exactly once in the equation, which digit must Q represent?
Q can not be 6 since that would leave a 1 in the ones place, and 1 is already

Problem 1

The letters P, Q, R, S and T have replaced digits in the equation $P 4 Q+2 R 5=S 1 T$. Given that each digit 1 through 9 is used exactly once in the equation, which digit must Q represent?
Q can not be 6 since that would leave a 1 in the ones place, and 1 is already used. Similarly, Q can not equal 7 or 9 .

Problem 1

The letters P, Q, R, S and T have replaced digits in the equation $P 4 Q+2 R 5=S 1 T$. Given that each digit 1 through 9 is used exactly once in the equation, which digit must Q represent?
Q can not be 6 since that would leave a 1 in the ones place, and 1 is already used. Similarly, Q can not equal 7 or 9 . The only possibilities left for Q are 3 or

8. If we try $Q=8$ we get

Problem 1

The letters P, Q, R, S and T have replaced digits in the equation $P 4 Q+2 R 5=S 1 T$. Given that each digit 1 through 9 is used exactly once in the equation, which digit must Q represent?
Q can not be 6 since that would leave a 1 in the ones place, and 1 is already used. Similarly, Q can not equal 7 or 9 . The only possibilities left for Q are 3 or

8. If we try $Q=8$ we get
$748+265=1013$, which is a four-digit sum rather than three-digit. If we try
$Q=3$, we get

Problem 1

The letters P, Q, R, S and T have replaced digits in the equation $P 4 Q+2 R 5=S 1 T$. Given that each digit 1 through 9 is used exactly once in the equation, which digit must Q represent?
Q can not be 6 since that would leave a 1 in the ones place, and 1 is already used. Similarly, Q can not equal 7 or 9 . The only possibilities left for Q are 3 or

8. If we try $Q=8$ we get
$748+265=1013$, which is a four-digit sum rather than three-digit. If we try $Q=3$, we get $643+275=918$, and each digit is used exactly once. So

$$
Q=3 \text {. }
$$

Problem 2

The positive four-digit integers that use each of the four digits 1,2 , 3 and 4 exactly once are ordered from least to greatest. What is the 15th integer in the list?

Problem 2

The positive four-digit integers that use each of the four digits 1,2 , 3 and 4 exactly once are ordered from least to greatest. What is the 15th integer in the list?

There are ${ }_{4} P_{4}=4!=24$ ways to rearrange the four digits $1,2,3$, and 4. If we hold the first digit fixed at the value 1 , then there are ${ }_{3} P_{3}=3!=6$ ways to arrange the remaining three digits. So, the first 6 numbers in the list will start with 1, and the next 6 will start with 2 . The 13th number will be

Problem 2

The positive four-digit integers that use each of the four digits 1,2 , 3 and 4 exactly once are ordered from least to greatest. What is the 15th integer in the list?

There are ${ }_{4} P_{4}=4!=24$ ways to rearrange the four digits $1,2,3$, and 4. If we hold the first digit fixed at the value 1 , then there are ${ }_{3} P_{3}=3!=6$ ways to arrange the remaining three digits. So, the first 6 numbers in the list will start with 1, and the next 6 will start with 2. The 13th number will be 3124. The 14th number will be

Problem 2

The positive four-digit integers that use each of the four digits 1,2 , 3 and 4 exactly once are ordered from least to greatest. What is the 15th integer in the list?

There are ${ }_{4} P_{4}=4!=24$ ways to rearrange the four digits $1,2,3$, and 4. If we hold the first digit fixed at the value 1 , then there are ${ }_{3} P_{3}=3!=6$ ways to arrange the remaining three digits. So, the first 6 numbers in the list will start with 1, and the next 6 will start with 2. The 13th number will be 3124. The 14th number will be 3142 , and the 15th number will be

Problem 2

The positive four-digit integers that use each of the four digits 1,2 , 3 and 4 exactly once are ordered from least to greatest. What is the 15th integer in the list?

There are ${ }_{4} P_{4}=4!=24$ ways to rearrange the four digits $1,2,3$, and 4. If we hold the first digit fixed at the value 1 , then there are ${ }_{3} P_{3}=3!=6$ ways to arrange the remaining three digits. So, the first 6 numbers in the list will start with 1, and the next 6 will start with 2 . The 13th number will be 3124 . The 14th number will be 3142 , and the 15th number will be 3214 .

Problem 3

A 6-ounce can of tuna has 13 grams of protein. This is 23% of the recommended daily allowance (RDA) based on a 2000-calorie diet. What is the number of grams of protein needed to get 100% of the RDA for this diet? Express your answer as a decimal to the nearest tenth.

Problem 3

A 6-ounce can of tuna has 13 grams of protein. This is 23% of the recommended daily allowance (RDA) based on a 2000-calorie diet. What is the number of grams of protein needed to get 100% of the RDA for this diet? Express your answer as a decimal to the nearest tenth.

Let R be the number of grams in the RDA. Then

Problem 3

A 6-ounce can of tuna has 13 grams of protein. This is 23% of the recommended daily allowance (RDA) based on a 2000-calorie diet. What is the number of grams of protein needed to get 100% of the RDA for this diet? Express your answer as a decimal to the nearest tenth.

Let R be the number of grams in the RDA. Then

$$
13=\frac{23}{100} R
$$

Problem 3

A 6-ounce can of tuna has 13 grams of protein. This is 23% of the recommended daily allowance (RDA) based on a 2000-calorie diet. What is the number of grams of protein needed to get 100% of the RDA for this diet? Express your answer as a decimal to the nearest tenth.

Let R be the number of grams in the RDA. Then

$$
\begin{gathered}
13=\frac{23}{100} R \\
R=13 \times \frac{100}{23}=\frac{1300}{23} \approx 56.5
\end{gathered}
$$

Problem 4

The Ace Bus Co. has buses that hold 45 students and buses that hold 35 students. If they use the fewest possible number of buses to transport 500 students, and each bus is filled to capacity, how many 45-passenger buses are used?

Problem 4

The Ace Bus Co. has buses that hold 45 students and buses that hold 35 students. If they use the fewest possible number of buses to transport 500 students, and each bus is filled to capacity, how many 45-passenger buses are used?

To use the minimum number of buses, as many 45-passenger busses as possible are filled first:

$$
\frac{500}{45}=11 \frac{1}{9}
$$

so that 11 45-passenger busses are used.

Problem 5

Without overlap, place these seven tiles into the 4×4 grid so that the four-digit number formed in the nth row equals the four-digit number in the nth column. The tiles may not be flipped or rotated. What is the sum of the four-digit numbers in Rows 1 and 2?

Problem 5, Continued

The key to solving this problem is to realize that we want to fill the matrix so that it is symmetrical about the red dashed line:

Problem 5, Continued

7	4	5	
4	2		
4	4	7	4
5	7	7	5
2	4	5	2

The sum of the two four-digit numbers in the top row is
$7452+4474=11,296$

Problem 6

If the ten letters in MATHCOUNTS are arranged at random, what is the probability that the word MATCH will be spelled out anywhere in the arrangement? Express your answer as a common fraction.

Problem 6

If the ten letters in MATHCOUNTS are arranged at random, what is the probability that the word MATCH will be spelled out anywhere in the arrangement? Express your answer as a common fraction.

There are ${ }_{10} P_{10}=10$! ways to rearrange a 10 -letter word. But since there are two " T " letters, so there are only $10!/ 2$ different words that can be formed from MATHCOUNTS.

Problem 6

If the ten letters in MATHCOUNTS are arranged at random, what is the probability that the word MATCH will be spelled out anywhere in the arrangement? Express your answer as a common fraction.

There are ${ }_{10} P_{10}=10$! ways to rearrange a 10 -letter word. But since there are two " T " letters, so there are only $10!/ 2$ different words that can be formed from MATHCOUNTS.

Now let's count the number of ways to spell MATCH. There are 6 locations that MATCH could take in the 10 letters:

MATCHxxxxx xMATCHxxxx xxMATCHxxx xxxMATCHxx xxxxMATCHx xxxxxMATCH

For each of these 6 choices, there are ${ }_{5} P_{5}=5$! ways to rearrange the other five letters, so there are a total of $6 \times 5!=6$! ways to form MATCH.

Problem 6, Continued

$$
\begin{aligned}
\text { Probability } & =\frac{\# \text { Successful Rearrangements }}{\text { Total } \# \text { Rearrangements }} \\
& =\frac{6!}{10!/ 2}=\frac{2}{10 \times 9 \times 8 \times 7} \\
& =\frac{1}{2520}
\end{aligned}
$$

Problem 7

The cube of a positive integer n is 9 less than $(n+9)^{2}$. What is the value of n ?

Problem 7

The cube of a positive integer n is 9 less than $(n+9)^{2}$. What is the value of n ?

$$
n^{3}=(n+9)^{2}-9=n^{2}+18 n+81-9=n^{2}+18 n+72
$$

Although there are formulas for solving cubic equations, they are very complicated. It's easier to just make a table:

n	n^{3}	$n^{2}+18 n+72$
1	1	91
2	8	112
3	27	135
4	64	160
5	125	187
6	216	216

Problem 8

A building has a rectangular foundation that is 20×15 feet. The roof extends between two opposite walls, is 12 feet high at the peak and slants down to 10 feet at the walls. What is the volume of the building?

Problem 8

A building has a rectangular foundation that is 20×15 feet. The roof extends between two opposite walls, is 12 feet high at the peak and slants down to 10 feet at the walls. What is the volume of the building?

Note that the building is in the form of a cylinder, i.e., a solid figure obtained by sweeping a planar polygon (the base) along a line. The volume of any cylinder can be found by this formula:

$$
\begin{aligned}
\text { Cylinder Volume } & =\text { Area of Base } \times \text { Cylinder Height } \\
V & =A h
\end{aligned}
$$

In this case the height of the cylinder is

Problem 8

A building has a rectangular foundation that is 20×15 feet. The roof extends between two opposite walls, is 12 feet high at the peak and slants down to 10 feet at the walls. What is the volume of the building?

Note that the building is in the form of a cylinder, i.e., a solid figure obtained by sweeping a planar polygon (the base) along a line. The volume of any cylinder can be found by this formula:

$$
\begin{aligned}
\text { Cylinder Volume } & =\text { Area of Base } \times \text { Cylinder Height } \\
V & =A h
\end{aligned}
$$

In this case the height of the cylinder is $h=20$ feet.

Problem 8, Continued

The base can be decomposed into a triangle and rectangle.

The volume of the solid is then

$$
V=A h=165 \times 20=3300 \mathrm{ft}^{3}
$$

Problem 8, Continued

The base can be decomposed into a triangle and rectangle.

Rectangle Area $=10 \times 15=150$
Triangle Area $=\frac{1}{2} \times 2 \times 15=15$

$$
\text { Total Area }=A=165
$$

The volume of the solid is then

$$
V=A h=165 \times 20=3300 \mathrm{ft}^{3}
$$

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer?

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :
9000,

Now divide each of these numbers by 2 :

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000, \quad 3330,
$$

Now divide each of these numbers by 2 :

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000,3330, \quad 3222,
$$

Now divide each of these numbers by 2 :

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000,3330,3222, \quad 2322,
$$

Now divide each of these numbers by 2 :

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000,3330,3222,2322,2232,
$$

Now divide each of these numbers by 2 :

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000, \quad 3330, \quad 3222, \quad 2322, \quad 2232,1116
$$

Now divide each of these numbers by 2 :

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000, \quad 3330, \quad 3222, \quad 2322, \quad 2232,1116
$$

Now divide each of these numbers by 2 :
4500,

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000, \quad 3330,3222, \quad 2322, \quad 2232,1116
$$

Now divide each of these numbers by 2 :
4500, 1665,

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000, \quad 3330, \quad 3222, \quad 2322, \quad 2232,1116
$$

Now divide each of these numbers by 2 :

$$
4500,1665,1611,
$$

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000, \quad 3330, \quad 3222, \quad 2322, \quad 2232,1116
$$

Now divide each of these numbers by 2 :
4500, 1665, 1611, 1161,

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000, \quad 3330, \quad 3222, \quad 2322, \quad 2232,1116
$$

Now divide each of these numbers by 2 :

$$
4500,1665,1611,1161,1116,
$$

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000, \quad 3330, \quad 3222, \quad 2322, \quad 2232,1116
$$

Now divide each of these numbers by 2 :

$$
4500,1665,1611,1161,1116,558
$$

Problem 9

A positive, even four-digit integer contains only two different digits, and the sum of its digits is 9 . If this integer is exactly twice another number also satisfying these conditions, what is the integer? First,
let's list all the even, four-digit numbers containing only two different digits, the sum of whose digits is 9 :

$$
9000, \quad 3330, \quad 3222, \quad 2322, \quad 2232,1116
$$

Now divide each of these numbers by 2 :
4500, 1665, 1611, 1161, 1116, 558
Only 2232 satisfies all the criteria.

Problem 10

Steve has three quarters, three nickels and three pennies. If Steve selects three coins at random and without replacement, what is the probability that the total value is exactly 35 cents? Express your answer as a common fraction.

Problem 10

Steve has three quarters, three nickels and three pennies. If Steve selects three coins at random and without replacement, what is the probability that the total value is exactly 35 cents? Express your answer as a common fraction.

Steve could obtain 35 cents only by drawing one quarter and 2 nickels.

Problem 10

Steve has three quarters, three nickels and three pennies. If Steve selects three coins at random and without replacement, what is the probability that the total value is exactly 35 cents? Express your answer as a common fraction.

Steve could obtain 35 cents only by drawing one quarter and 2 nickels. He could draw them in any of the following three orders: QNN, NQN, NNQ.

Problem 10

Steve has three quarters, three nickels and three pennies. If Steve selects three coins at random and without replacement, what is the probability that the total value is exactly 35 cents? Express your answer as a common fraction.

Steve could obtain 35 cents only by drawing one quarter and 2 nickels. He could draw them in any of the following three orders: QNN, NQN, NNQ.

$$
p(\mathrm{QNN})=\frac{3}{9} \times \frac{3}{8} \times \frac{2}{7}=\frac{1}{28}
$$

Problem 10

Steve has three quarters, three nickels and three pennies. If Steve selects three coins at random and without replacement, what is the probability that the total value is exactly 35 cents? Express your answer as a common fraction.

Steve could obtain 35 cents only by drawing one quarter and 2 nickels. He could draw them in any of the following three orders: QNN, NQN, NNQ.

$$
p(\mathrm{QNN})=\frac{3}{9} \times \frac{3}{8} \times \frac{2}{7}=\frac{1}{28}
$$

and similarly, the probability is also $1 / 28$ to draw NQN or to draw NNQ. So the probability that any of these three events occur is

$$
3 \times \frac{1}{28}=\frac{3}{28}
$$

