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Oral Discussion Topics

I History of Geometry

I Points, Lines, Circles

I Definition of Angle

I Definition of π.

I Angle measures: degrees and radians



Euclid

ll

I Born ca 325 BC, Died ca 265 BC (Alexandria, Egypt).

I The most prominent mathematician of antiquity.
I Wrote geometric treatise The Elements

I Long lasting nature (more than 2000 years) of The Elements must
make Euclid the leading mathematics teacher of all time!

I Quotations by Euclid
I “There is no royal road to geometry.”
I A youth who had begun to read geometry with Euclid, when he had

learned the first proposition, inquired, “What do I get by learning these
things?” So Euclid called a slave and said “Give him threepence, since
he must make a gain out of what he learns.”



Similarity and Congruence

Similarity Two figures A and B are similar if all lengths of one are
proportional to the corresponding lengths of the other.
Note that this means that the corresponding angles are
equal. We write A ∼ B.

Congruence Two figures are congruent if all lengths of one are equal to
the corresponding lengths of the other; i.e., one can be
obtained from the other by a translation and/or a rotation.
We write A ∼= B.

Note that if two figures are congruent, then they are automatically similar.
The converse is not true.
(Sketch some figures on the board. Discuss congruence and similarity.)
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Vertical Angles Two angles whose sides form two pairs of opposite rays
are called vertical. ∠1 and ∠3 are vertical angles.
Theorem: Vertical angles are congruent: ∠1 ∼= ∠3 or
m∠1 = m∠3.

Adjacent Angles share a common vertex and a common side but no
common interior points.

Supplementary Angles are angles whose measures add up to 180◦ or π
radians. Each angle is said to be the supplement of the
other. ∠1 and ∠2 form a pair of supplementary angles.

Complementary Angles are angles whose measures add up to 90◦ or
π/2 radians. Each angle is said to be the complement of
the other.
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Intersecting Lines: Example

Suppose m∠A = 20◦.

1. Find the measure of a complement of ∠A.

Solution: Let ∠B be the complement of ∠A. Then
m∠A + m∠B = 90◦, so that m∠B = 90◦ − m∠A = 90◦ − 20◦ = 70◦.

2. Find the measure of a supplement of ∠A.

Solution: Let ∠C be the supplement of ∠A. Then
m∠A + m∠C = 180◦, so that
m∠C = 180◦ − m∠A = 180◦ − 20◦ = 160◦.



Intersecting Lines: Example

Suppose m∠A = 20◦.

1. Find the measure of a complement of ∠A.

Solution: Let ∠B be the complement of ∠A. Then
m∠A + m∠B = 90◦, so that m∠B = 90◦ − m∠A = 90◦ − 20◦ = 70◦.

2. Find the measure of a supplement of ∠A.

Solution: Let ∠C be the supplement of ∠A. Then
m∠A + m∠C = 180◦, so that
m∠C = 180◦ − m∠A = 180◦ − 20◦ = 160◦.



Intersecting Lines: Example

Suppose m∠A = 20◦.

1. Find the measure of a complement of ∠A.

Solution: Let ∠B be the complement of ∠A. Then
m∠A + m∠B = 90◦, so that m∠B = 90◦ − m∠A = 90◦ − 20◦ = 70◦.

2. Find the measure of a supplement of ∠A.

Solution: Let ∠C be the supplement of ∠A. Then
m∠A + m∠C = 180◦, so that
m∠C = 180◦ − m∠A = 180◦ − 20◦ = 160◦.



Intersecting Lines: Example

Suppose m∠A = 20◦.

1. Find the measure of a complement of ∠A.

Solution: Let ∠B be the complement of ∠A. Then
m∠A + m∠B = 90◦, so that m∠B = 90◦ − m∠A = 90◦ − 20◦ = 70◦.

2. Find the measure of a supplement of ∠A.

Solution: Let ∠C be the supplement of ∠A. Then
m∠A + m∠C = 180◦, so that
m∠C = 180◦ − m∠A = 180◦ − 20◦ = 160◦.



Intersecting Lines: Example

�
�

�
�

�
��H

HHH
HHH

1
2 3

4

I Assume m∠3 = 120◦. Find the measures of the three other angles.

I m∠1

= m∠3 = 120◦

I m∠2

= 180 − 120 = 60◦

I m∠4

= m∠2 = 120◦
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Parallel Lines with a Transversal
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h ‖ k , with transversal t .

Interior angles: ∠3, ∠4, ∠5, ∠6.

Exterior angles: ∠1, ∠2, ∠7, ∠8.

Corresponding angles are a pair of angles in corresponding positions
relative to the two lines: (∠1,∠5), (∠2,∠6), (∠3,∠7), and
(∠4,∠8).

Same-side Interior Angles are two interior angles on the same side of
the transversal: (∠3,∠5) and (∠4,∠6).

Alternate Interior Angles are two nonadjacent interior angles on opposite
sides of the transversal: (∠3,∠6) and (∠4,∠5).

Postulate: If h ‖ k , then corresponding angles are congruent.

Theorem: If h ‖ k , then alternate interior angles are congruent.
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h ‖ k , with transversal t .

I Assume m∠1 = 135◦. Find all other labeled angles:

I m∠2 =

180◦ − m∠1 = 180◦ − 135◦ = 45◦

I m∠3 =

m∠2 = 45◦

I m∠4 =

m∠1 = 135◦

I m∠5 =

m∠1 = 135◦

I m∠6 =

m∠2 = 45◦

I m∠7 =

m∠6 = 45◦

I m∠8 =

m∠5 = 135◦
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I m∠6 = m∠2 = 45◦

I m∠7 = m∠6 = 45◦

I m∠8 = m∠5 = 135◦



Parallel Lines with Transversal Example
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h ‖ k , with transversal t .

I What is the value of the sum m∠3 + m∠5?

I What is the value of the sum m∠4 + m∠6?

I What can you conclude about same-side interior angles?

I Same-side interior angles are supplementary
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Sum of Interior Angles of a Triangle
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1. Through B, draw DB parallel to AC.

2. Note that m∠4 + m∠2 + m∠5 = 180◦.

3. Note that ∠1 ∼= ∠4, and ∠5 ∼= ∠3. (Why?)

4. Therefore, m∠1 + m∠2 + m∠3 = 180◦.

The sum of the interior angles of a triangle equals 180◦.
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Proof of Pythagorean Theorem

a

b
HHH

HHH

c Area of triangle = 1
2 ab

Consider four copies of the triangle, rotated by 0◦, 90◦, 180◦, and 270◦.
The side length of the small, central square is a − b. The area of the
large, outer square of side length c can be calculated two ways:

c2 = 4
( 1

2 ab
)
+ (a − b)2 = 2ab + a2 − 2ab + b2 = a2 + b2

c

a

�
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b
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Height and Area of Isosceles Triangle

�
�
�
�
�
�

a

A
A

A
A

A
A

a

b
1. Draw perpendicular bisector from base to opposite vertex.

2. From Pythagoras: h2 + (b/2)2 = a2 so that

3. h =
√

a2 − (b/2)2.

4. The area A is then found using A = 1
2 bh.
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a

A
A

A
A

A
A

ah

b/2



Distance Between Points in the Plane
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1. Distance between points measured parallel to x-axis is

X = 2 − (−1) = 3.

2. Distance between points measured parallel to y -axis is

Y = 2 − (−2) = 4.

3. Distance between points is equal to length of hypotenuse which is

d =
√

X 2 + Y 2 =
√

32 + 42 =
√

9 + 16 =
√

25 = 5.

4. For general case of point A : (xA, yA) and point B : (xB, yB),

distance(A,B) =
√

(xA − xB)2 + (yA − yB)2
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