Name: \qquad

Los Primeros MATHCOUNTS 2004-2005
 Homework 3
 May 12, 2004

1. Recall that the sum of the interior angles of a triangle is 180°. Use this fact to help fill out the table below, by first sketching a polygon, then connecting one vertex to each of the others, thus dividing the figure into triangles. Multiply the number of triangles so obtained by 180° to find the sum of the interior angles.

Regular Polygons

\# Sides	\# Triangles	Sum of Interior Angles	Measure of Single Interior Angle
3	$3-2=1$	$1 \times 180^{\circ}=180^{\circ}$	$180^{\circ} / 3=60^{\circ}$
4	$4-2=2$	$2 \times 180^{\circ}=360^{\circ}$	$360^{\circ} / 4=90^{\circ}$
5			
6			
N			

2. What do x and y have to be to make this figure a parallelogram?

3. Suppose that a and b are distinct, prime numbers. How many factors does the number $8 a b$ have?
4. How many centimeters are in the length of the longest side of a rectangle whose area is 108 square centimeters and whose perimeter is 42 centimeters?
5. Outline and/or shade-in the following figures on the triangle diagram below using only the existing lines:

a) equlateral triangle	g)	trapezoid (non-isosceles)
b) isosceles triangle (non-equilateral)	h)	isosceles trapezoid
c) right triangle	i)	pentagon
d) scalene triangle	j) hexagon	
e) parallelogram (not a rectangle or rhombus)	k)	heptagon
f) rectangle	l) octagon	

Definitions

Circle The set of points in the plane a given distance from a given point.
Congruent Equal measure.
Hexagon A six-sided polygon.
Heptagon A seven-sided polygon.
Octagon An eight-sided polygon.
Parallelogram A quadrilateral with both pairs of opposite sides parallel.
Pentagon A five-sided polygon.
Polygon A plane figure with straight sides.
Quadrilateral A four-sided polygon.
Rectangle A quadrilateral with four right angles; it is a special kind of parallelogram.
Rhombus A parallelogram with all four sides congruent.
Similar Figures whose corresponding angles are equal; figures of the same shape but not necessarily the same size.
Trapezoid A quadrilateral with exactly one pair of opposite sides parallel.
-Isosceles A trapezoid with the un-parallel sides congruent.
Triangle A three-sided polygon.
-Equilateral A triangle with all sides congruent.
-Isosceles A triangle with at least two sides congruent.
-Right A triangle with a right angle.
-Scalene A triangle with no sides congruent.

Los Primeros MATHCOUNTS 2004-2005
 Answer Key for Homework 3
 May 12, 2004

1. Recall that the sum of the interior angles of a triangle is 180°. Use this fact to help fill out the table below, by first sketching a polygon, then connecting one vertex to each of the others, thus dividing the figure into triangles. Multiply the number of triangles so obtained by 180° to find the sum of the interior angles.

Regular Polygons

\# Sides	\# Triangles	Sum of Interior Angles	Measure of Single Interior Angle
3	$3-2=1$	$1 \times 180^{\circ}=180^{\circ}$	$180^{\circ} / 3=60^{\circ}$
4	$4-2=2$	$2 \times 180^{\circ}=360^{\circ}$	$360^{\circ} / 4=90^{\circ}$
5	$5-2=3$	$3 \times 180^{\circ}=540^{\circ}$	108°
6	$6-2=4$	$4 \times 180^{\circ}=720^{\circ}$	120°
N	$N-2$	$(N-2) \times 180^{\circ}$	$\frac{N-2}{N} \times 180^{\circ}$

2. What do x and y have to be to make this figure a parallelogram?

Answer: If the figure is to be a parallelogram, then it must be true that each pair of adjacent vertices defines a pair of same-side interior angles. Thus, we must have that

$$
\left(x-40^{\circ}\right)+\left(x+40^{\circ}\right)=180^{\circ}
$$

which is easily solved to find that $x=90^{\circ}$. Similarly, we must have

$$
\left(x-40^{\circ}\right)+y=180^{\circ} \Longrightarrow 50^{\circ}+y=180^{\circ}
$$

so that $y=130^{\circ}$.
3. Suppose that a and b are distinct, prime numbers. How many factors does the number $8 a b$ have?

Answer: We know that for any number written as a product of distinct prime numbers raised to powers, the number of factors can be found by adding 1 to each exponent and then multiplying. Thus, since $8 a b=$ $2^{3} a^{1} b^{1}$ we have \# Factors $=(3+1)(1+1)(1+1)=(4)(2)(2)=16$.
4. How many centimeters are in the length of the longest side of a rectangle whose area is 108 square centimeters and whose perimeter is 42 centimeters?

Answer: The perimeter of a rectangle is twice the sum of the length and width, thus the length plus the width of the rectangle is $42 \div 2=21$ centimeters. So, $L+W=21$ and $L W=108$. Algebra or trial and error gives $L=12, W=9$ so the length is $\mathbf{1 2} \mathbf{~ c m}$.
5. Outline and/or shade-in the following figures on the triangle diagram below using only the existing lines:
a) equlateral triangle
b) isosceles triangle (non-equilateral)
c) right triangle
d) scalene triangle
e) parallelogram (not a rectangle or rhombus)
f) rectangle
g) trapezoid (non-isosceles)
h) isosceles trapezoid
i) pentagon
j) hexagon
k) heptagon

1) octagon

One of many possible solutions:

Definitions

Circle The set of points in the plane a given distance from a given point.
Congruent Equal measure.
Hexagon A six-sided polygon.
Heptagon A seven-sided polygon.
Octagon An eight-sided polygon.
Parallelogram A quadrilateral with both pairs of opposite sides parallel.
Pentagon A five-sided polygon.
Polygon A plane figure with straight sides.
Quadrilateral A four-sided polygon.
Rectangle A quadrilateral with four right angles; it is a special kind of parallelogram.
Rhombus A parallelogram with all four sides congruent.
Similar Figures whose corresponding angles are equal; figures of the same shape but not necessarily the same size.
Trapezoid A quadrilateral with exactly one pair of opposite sides parallel.
-Isosceles A trapezoid with the un-parallel sides congruent.
Triangle A three-sided polygon.
-Equilateral A triangle with all sides congruent.
-Isosceles A triangle with at least two sides congruent.
-Right A triangle with a right angle.
-Scalene A triangle with no sides congruent.

