Los Primeros MATHCOUNTS 2004-2005 Homework 1
 April 6, 2004

1. Find the sum of all odd numbers between 0 and 1000 .
2. Find the sum of all even numbers between 0 and 1000, inclusive.
3. The squares of a chessboard are numbered as shown in the following table:

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
			\vdots				
57	58	59	60	61	62	63	64

One grain of rice is laid in square 1 , two in square 2, three in square 3 , four in square 4 , etc. How many grains are there altogether in the last five rows?
4. When three integers are added two at a time, three distinct sums are obtained: 32,48 , and 46 . What is the sum of the three integers?
5. Each term in a sequence is the sum of the previous two terms. If the sequence contains the terms $a, b, c, 12,19$, and 31 , in that order, what is the value of a ?

Answer Key for Homework 1

1. Find the sum of all odd numbers between 0 and 1000 .

Answer: This is an arithmetic series: $S=1+3+5+\cdots+999$. We know that the sum is equal to the average of the first and last term multiplied by the number of terms. By comparing a given term to its place in the list, we see that the first term is $1=2 \times 1-1$, the second term is $3=2 \times 3-1$, the third term is $5=2 \times 3-1$ and so on. Thus, the 500 th term is $2 \times 500-1=999$ so that there must be 500 terms in total. The sum is therefore

$$
S=\frac{1+999}{2} \times 500=500 \times 500=250,000
$$

2. Find the sum of all even numbers between 0 and 1000 , inclusive.

Answer: This arithmetic series is summed in the same way as in the previous problem. The sum is $S=2+4+6+\cdots+1000$ and there are 500 terms. Thus,

$$
S=\frac{2+1000}{2} \times 500=501 \times 500=250,500
$$

3. The squares of a chessboard are numbered as shown in the following table:

1	2	3	4	5	6	7	8						
9	10	11	12	13	14	15	16						
	\vdots												
57	58	59	60	61	62	63	64						

One grain of rice is laid in square 1 , two in square 2 , three in square 3 , four in square 4 , etc. How many grains are there altogether in the last five rows?

Answer: The number we seek is $S=25+26+27+\cdots+64$. Since this is an arithmetic series with $a=25, b=64$, and $n=40$, the answer is

$$
S=n \frac{a+b}{2}=40 \frac{25+64}{2}=1780
$$

Another way to look at the problem is to consider S to be the difference between the total number of grains of rice and the number located in the first three rows. Since the last square in row 3 is square \#24, then

$$
S=T_{64}-T_{24}=\frac{64 \times 65}{2}-\frac{24 \times 25}{2}=32 \times 65-12 \times 25=1780
$$

4. When three integers are added two at a time, three distinct sums are obtained: 32,48 , and 46 . What is the sum of the three integers?

Answer: Denote the three integers as a, b, and c. We are given that $a+b=32$, $a+c=48$, and $b+c=46$. If we add all three equations together, we obtain $2(a+b+c)=32+48+46=126$. Therefore, $a+b+c=126 / 2=63$.
5. Each term in a sequence is the sum of the previous two terms. If the sequence contains the terms $a, b, c, 12,19$, and 31 , in that order, what is the value of a ?

Answer: Working backwards, we have that $c+12=19$, so $c=7$. But $12=$ $b+c=b+7$ so $b=5$. Finally, $c=7=a+b=a+5$ so that we must have $a=2$.

