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Introduction to Combinatorics

Peter S. Simon

What is Combinatorics?

Combinatorics is a fancy word for counting. Combinatorics is

concerned with determining the the number of logical possibilities

of some event without necessarily listing all the particular

outcomes. One can often perform calculations involving

probabilities simply by counting the possible outcomes.

Combinatorics often requires counting the number of possible

permutations (rearrangements) or combinations (groupings) of a

set of objects.
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Fundamental Principle of Counting

If some event can in occur in n1 different ways, and if

following this event, a second event can occur in n2

different ways, and if following this second event, a third

event can occur in n3 ways, . . ., then the number of ways

the events can occur in the order indicated is

n1 × n2 × n3 . . ..

Example (License Plates)
Suppose a license plate contains three letters (all capitals)

followed by two digits with the first digit not zero. How many

different license plates can be printed?

Each letter can be printed in twenty-six different ways, the first digit

in nine ways, and the last digit in ten ways. Therefore, there are

26 × 26 × 26 × 9 × 10 = 1,581,840

different plates that can be printed.
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Fundamental Principle of Counting (Cont.)

Example (Base 2 Counting)
How many distinct numbers can be represented by an 8-bit binary

number?

In a binary number, each binary digit (bit) is either 0 or 1: there are

exactly two choices for each bit. Therefore, the number of unique

bit combinations is

2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 28
= 256

An 8-bit binary number is called a byte. This is the fundamental

unit of memory storage in modern computers. We see that if one

byte is used to represent a letter of the alphabet, then the largest

alphabet that could be represented this way would consist of 256

letters. Although this is plenty for English, providing enough room

for both uppercase and lowercase letters and the decimal digits, it

is far too few for many other languages, such as Chinese, which

contains thousands of characters.
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Fundamental Principle of Counting (Cont.)

Example (Base 8 Counting)
How many distinct numbers can be represented by a 6-digit octal

number?

In an octal number, each digit is one of numbers 0, 1, 2, . . . , 7:

there are exactly eight choices for each digit. Therefore, the

number of unique bit combinations is

8 × 8 × 8 × 8 × 8 × 8 = 86
= 262,144
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Fundamental Principle of Counting (Cont.)

Example (Counting without Duplicate Digits)
How many different numbers can be generated using six digits, if

none of the digits are repeated?

There are 10 choices for the first digit. Once this digit has been

selected, there remain 9 choices for the second digit. Once the

first two digits have been chosen, there remain 8 choices for the

third digit, and so on. Using the Fundamental Principle of

Counting, we see that there are

10 × 9 × 8 × 7 × 6 × 5 = 151, 200

different numbers that can be generated in this way.
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Factorial Notation

The product of the positive integers from 1 to n inclusive is denoted

by n! (read as “n factorial”):

n! = 1 × 2 × 3 × · · · × (n − 2) × (n − 1) × n.

It is convenient to define 0! = 1. As we will see, this convention

makes many formulas come out “nicer” for the boundary cases.

Example: 3! = 3 × 2 × 1 = 1 × 2 × 3 = 6.

Example: 4! = 4 × 3 × 2 × 1 = 24.

Example: Express 8 × 7 × 6 in factorial notation.

8 × 7 × 6 = 8 × 7 × 6 ×
5 × 4 × 3 × 2 × 1

5 × 4 × 3 × 2 × 1
=

8!

5!

Example: Compute 25!
22!

.

25!

22!
=

25 × 24 × 23 × 22!

22!
= 25 × 24 × 23 = 13,800.
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Factorial Example Problems

(Students should copy these answers into their notes)

1. 0! =

2. 1! =

3. 2! =

4. 5! =

5. Express 9 × 8 × 7 in factorial notation:

6. Evaluate
20!

18!
:
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Permutations

Any particular arrangement of a set of n objects in a given order is

called a permutation of these objects (taken all at a time). Any

arrangement of k ≤ n of these objects in a given order is called a

k -permutation or a permutation of the n objects taken k at a time.

For example, consider the set of letters a,b, c, and d . Then cbd is

a permutation of the four letters taken three at a time.

The number of permutations of n objects taken k at a time is

denoted by

P(n, k ), nPk , Pn,k , Pn
k
, or (n)k .

We will use only nPk .
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Permutations Example: Eight Objects Five at a Time

How many permutations are there for eight objects, say

a, b, c, d , e, f , g,h, taken five at a time? Let the general five-letter

word be represented by the following five boxes:

. Now the first letter can be chosen in eight

different ways; following this, the second letter can be chosen in

seven different ways; following this, the third letter can be chosen

in six different ways; and so on. We write each number in its

appropriate box as follows: 8 7 6 5 4 . Thus by the

fundamental principle of counting there are

8 × 7 × 6 × 5 × 4 = 6720 possible five-letter words without

repetitions from the eight letters. In other words, there are 6720

permutations of eight objects taken five at a time:

8P5 = 6720 = 8 × 7 × 6 × 5 × 4 =
8!

3!
=

8!

(8 − 5)!
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The General Formula for nPk

The general formula is obtained by reasoning identical to that of

the previous example. Thus,

nPk = (n − 0)(n − 1)(n − 2) · · · (n − [k − 1])︸ ︷︷ ︸
k factors

= n(n − 1)(n − 2) · · · (n − k + 1)

= n(n − 1)(n − 2) · · · (n − k + 1)
(n−k )(n−k−1)(n−k−2)···(3)(2)(1)

(n−k )(n−k−1)(n−k−2)···(3)(2)(1)

=
n!

(n − k )!
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Permutations versus Combinations

Sometimes we need to count the ways that a group of objects can

be arranged into sets without regard to order. For instance,

suppose we wish to count the number of ping-pong matches

needed for each student in a class to play each other student. In

this case, counting the number of permutations of the class taken 2

at a time is not appropriate. The reason is that permutations

recognize order. That is, both (Jack,Jill) and (Jill,Jack) would

counte as separate permutations, when they both represent a

single ping-pong match between Jack and Jill. We shouldn’t have

count both of them. We need a way of counting that doesn’t

distinguish based on reorderings.

Such a way is to count combinations rather than permutations.
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Combinations

Suppose we have a collection of n objects. A combination of these

n objects taken k at a time is any set containing k of the objects,

where we do not distinguish combinations based on order.

Combinations differ from permutations in that the order of the

objects matters in permutations and does not matter in

combinations.

For example, the combinations of the letters a, b, c, d taken three

at a time are

{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, or simply abc, abd , acd , bcd .

It is important to understand that the following combinations are

equal:

abc, acb, bac, bca, cab, cba

Each denotes the same set {a,b, c}. Question: Could you have

predicted that there are six arrangements of these three letters?
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Combinations versus Permutations

(Students should fill in the answers in their notes)

In the following, would you count permutations or combinations?

1. The number of three-person committees that can be chosen

from a class of 30 students.

2. The number of three-letter “words” (including nonsense

words) that can be formed from the letters “t”, “a”, and “c”.

3. The number of routes a mailman can take to deliver letters to

his patrons.

4. The number of different starting lineups that can be selected

from a basketball team of 12 players.

5. The number of ways to arrange the 12 songs on a CD.
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Notation for the Number of Combinations of n Things

Taken k at a Time

Several notations in common use are

C(n, k ) =

(
n

k

)
= Cn,k = nCk = Cn

k

with
(n

k

)
being the most popular. It is read as “n choose k ” or “n

things k at a time” or “the number of combinations of n things

taken k at a time.” In Mathcounts We will use the notation nCk

most of the time.
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Example: 4C3

How many combinations are there of four objects taken three at a

time? Let’s label the four objects a, b, c, and d . Each combination

consisting of three objects determines 3! = 3 × 2 × 1 = 6

permutations of the objects in the combination:

Combinations Permutations

abc abc, acb, bac, bca, cab, cba

adb adb, abd , dab, dba, bad , bda

acd acd , adc, cad , cda, dac, dca

bcd bcd , bdc, cbd , cdb, dbc, dcb

Thus the number of combinations multiplied by 3! equals the

number of permutations:

4C3 × 3! = 4P3 or 4C3 =
4P3

3!
.

But, 4P3 = 4 × 3 × 2 = 24 and 3! = 6, so 4C3 = 24/6 = 4 as we can

observe from the table.
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General Formula for nCk

Since any combination of n objects taken k at a time determines k !

permutations of the objects in the combination, we can conclude

that

nPk = k ! nCk

or, finally

nCk =
nPk

k !
=

n!

k !(n − k )!
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How to Compute nCk

Recall that there are k factors in

nPk =
n!

(n − k )!
= n(n − 1)(n − 2) · · · (n − k + 1)︸ ︷︷ ︸

k factors

and that there are also k factors in

k ! = k (k − 1)(k − 2) · · · 1︸ ︷︷ ︸
k factors

so that

nCk =
n!

k !(n − k )!
=

n

k
×

n − 1

k − 1
×

n − 2

k − 2
× · · · ×

n − k + 1

1︸ ︷︷ ︸
k factors

Using this formula for nCk will help to avoid overflows on your

calculator!
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Practice Problem 1

Burger Shack offers only one type of hamburger but seven different

toppings. How many types of burgers can be created by choosing

any four toppings? Ignore the order that the four toppings are

applied.
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Practice Problem 1 Solution

Burger Shack offers only one type of hamburger but seven different

toppings. How many ways types of burgers can be created by

choosing any four toppings?

Reasoning Assume first that the order of the toppings matters.

We have 7 choices for the first topping, 6 choices left

for the second, 5 choices left for the third, and 4

choices left for the fourth, giving a total of

7 × 6 × 5 × 4 different arrangements of the four

toppings. However, for each set of four toppings

selected, we counted each reordering (permutation)

of these four as a separate case. Thus we

overcounted by a factor equal to the number of

rearrangements (permutations) of four objects, or 4!.

Thus, the number of different burgers we seek is

7 × 6 × 5 × 4

4 × 3 × 2 × 1
= 35
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Practice Problem 1 Solution, (Cont.)

Burger Shack offers only one type of hamburger but seven different

toppings. How many ways types of burgers can be created by

choosing any four toppings?

Using the Formula Since the order of the toppings doesn’t matter,

we want to count the number of combinations of 7

things taken 4 at a time:

7C4 =
7!

4!(7 − 4)!
=

7

4
×

6

3
×

5

2
×

4

1
= 7 × 5 = 35.
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Practice Problem 2

How many different ways can Jenny arrange her schedule of 6

classes?

Reasoning Jenny has 6 choices for her first class. She then has

5 remaining choices for her second class, 4 for her

third class, and so on. Therefore, there are

6! = 6 × 5 × 4 × 3 × 2 × 1 = 720 different ways to

arrange her schedule.

Using the Formula We want to know the number of permutations

of 6 things taken 6 at a time, or

6P6 =
6!

(6 − 6)!
=

6!

0!
=

6!

1
= 6! = 720.
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Permutations and Repetitions

Permutations of “DADDY” Suppose we want to find the number

of five-letter words that can be created by rearranging the letters in

the word “DADDY”. First, consider the number of permutations of

the symbols D1AD2D3Y, where we will temporarily distinguish

between the three D’s. Clearly there are 5P5 = 5! such

permutations. However, we note that the following six permutations

D1D2D3AY, D1D3D2AY, D2D1D3AY, D2D3D1AY, D3D1D2AY, and D3D2D1AY

all produce the same word when the subscripts are removed. The

6 comes from the fact that there are 3P3 = 3! = 6 permutations for

placing the three D’s in the first three positions of this permutation.

This will be true for any choice of placement of the three D’s. Thus

there are
5!

3!
=

120

6
= 20

different five-letter words obtainable by rearranging the word

DADDY.

23

Permutations of “DADDA”

How many five-letter words can be formed by rearranging the

letters in the word “DADDA”? As before, we note that if all the

letters were distinguishable, then we would have 5P5 = 5! possible

rearrangements. However, three D’s are identical and two A’s are

identical in this word. By similar reasoning to the previous example,

we see that we have overcounted by the product of the number of

rearrangements of three things times the number of possible

rearrangements of two things 3! × 2!. Therefore, the number of

five-letter words obtainable by rearranging the letters in “DADDA” is

5!

3! 2!
=

120

6 × 2
= 10.
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General Formula for Permutations with Repetitions

The number of permutations of n objects of which n1 are alike, n2

are alike, . . ., nr are alike is

n!

n1! n2! · · · nr !
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Circular Permutations

Question: How many ways can six people be seated at a round

table?

When attacking this type of problem you must first understand that

we do not consider two different seatings to be distinct if one can

be obtained from the other by simply rotating all the people around

the table, while maintaining their relative positions. For example, if

the people are numbered 1–6, the following seatings are all

considered to be equivalent and count as only one seating

arrangement:

6

12

3

4 5

1

23

4

5 6

2

34

5

6 1

3

45

6

1 2

4

56

1

2 3

5

61

2

3 4

because each person has the same neighbors to his left and right

in each case.

We see that we can fix the location of one of the diners, say #6,

and then there are 5 remaining slots to fill, which can be done in

5P5 = 5! = 120 ways. In general, there are (n − 1)! ways to

arrange n things around a circle.
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Pascal’s Triangle and Powers of 11

Let’s look at the first few integer powers of 11:

11
0
= 1

11
1
= 1 1

11
2
= 1 2 1

11
3
= 1 3 3 1

11
4
= 1 4 6 4 1

The decimal digits in these powers of 11 are equal to the following
combinations of n things k at a time:

0C0

1C0 1C1

2C0 2C1 2C2

3C0 3C1 3C2 3C3

4C0 4C1 4C2 4C3 4C4

What is the connection between Pascal’s triangle (consisting of nCk , the

number of combinations of n things taken k at a time) and the digits

occuring in the first few integral powers of 11?
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Binomial Theorem and Pascal’s Triangle

The connection between Pascal’s triangle and the digits occurring

in the first few integer powers of 11 is given by a mathematical

identity known as the binomial theorem. Pascal’s Triangle is

named after the French mathematician, Blaise Pascal

(1623–1662), although it had been described 5 centuries earlier by

the Chinese and also and the by the Persians. The binomial

theorem was known for the case n = 2 by Euclid ca 300 BC, and

stated in modern form by Pascal.

A binomial is just the sum of two numbers: a + b.
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Binomials Raised to Powers

Consider the binomial

P = (a + b)5
= (a + b)(a + b)(a + b)(a + b)(a + b).

We want to keep track of where the a’s and b’s in the product come

from, so we will temporarily add subscripts to each factor in the

product:

P = (a1 + b1)(a2 + b2)(a3 + b3)(a4 + b4)(a5 + b5)

If we multiply this out, we get terms like a1b2a3a4b5. The total

number of terms will be 2
5

(why?). These terms result from

selecting one of the terms (ak or bk ) from each factor in the original

product. Note that the number of as and bs in each term must add

up to 5. How many terms are there with three as and two bs?

There must be 5C3 = 5C2 =
5!

2! 3!
= 10 (why?)
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The Binomial Theorem

Since there really aren’t any subscripts on the as and bs, each of

these 10 terms is identical and is equal to a
3
b

2
. Since there are 10

of them, the product will contain the term 10a
3
b

2
.

From these considerations, one can prove that for any numbers a

and b and any nonnegative integer n:

(a + b)n
=

n∑
k=0

nCk an−k bk

= nC0anb0
+ nC1an−1b1

+ nC2an−2b2
+ · · ·

· · · + nCn−1a1bn−1
+ nCna0bn.

This is the motivation for referring to the quantity nCk as a binomial

coefficient.
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Examples for Binomial Theorem

Example (n = 2)

(a+b)2
=

2∑
k=0

2Ck a2−k bk
= 2C0a2b0

+2C1a1b1
+2C2a0b2

= a2
+2ab+b2

Example (n = 2 with a = 5 and b = 2)

(5 + 2)2
=

2∑
k=0

2Ck 52−k 2k
= 2C05220

+ 2C15121
+ 2C25022

= 52
+ 2 × 5 × 2 + 22

= 49

31

Binomial Theorem and Pascal’s Triangle (Cont.)

The theorem is sometimes very convenient when it is easy to raise

a and b to various powers and more difficult to calculate (a + b)

raised to the same powers. For example 11 = 10 + 1 and it is very

easy to raise 10 and 1 to any integer powers.

Example

113
= (10 + 1)3

= 3C010310
+ 3C110211

+ 3C210112
+ 3C310013

= 3C0 × 1000 + 3C1 × 100 + 3C2 × 10 + 3C3 × 1

= 1 × 1000 + 3 × 100 + 3 × 10 + 1 × 1 = 1331.

Note that we can find all of the binomial coefficients for n = 3 by

looking at the decimal digits in the number 11
3. Similarly, we can

find all the binomial coefficients for n = 2 by examining the decimal

representation of 11
2. But consider how multiplication by 11 is

accomplished. . .
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Binomial Theorem and Pascal’s Triangle (Cont.)

Consider 11
2
:

11
×11

11
+11

121

and 11
3
:

121
×11
121

+121
1331

Each successive power of 11 is obtained by adding two copies of

the preceeding power, after shifting one of the factors one place to

the left. This observation helps explain the workings of Pascal’s

Triangle.
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Pascal’s Triangle Begins with Decimal Expansion of 11n

11
0
= 1

11
1
= 1 1

11
2
= 1 2 1

11
3
= 1 3 3 1

11
4
= 1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

· · ·
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Pascal’s Triangle

We can generalize the interpretation of Pascal’s triangle to

binomials involving any two numbers a and b.

(a + b)
0
= 1

(a + b)
1
= a + b

(a + b)
2
= a

2
+ 2ab + b

2

(a + b)
3
= a

3
+ 3a

2
b + 3ab

2
+ b

3

(a + b)
4
= a

4
+ 4a

3
b + 6a

2
b

2
+ 4ab

3
+ b

4

(a + b)
5
= a

5
+ 5a

4
b + 10a

3
b

2
+ 10a

2
b

3
+ 5ab

4
+ b

5

(a + b)
6
= a

6
+ 6a

5
b + 15a

4
b

2
+ 20a

3
b

3
+ 15a

2
b

4
+ 6ab

5
+ b

6

· · ·
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Pascal’s Triangle (Cont.)

(a + b)
0
=

(0
0

)
(a + b)

1
=

(
1
0

)
a +

(
1
1

)
b

(a + b)
2
=

(
2
0

)
a

2
+
(

2
1

)
ab +

(
2
2

)
b

2

(a + b)
3
=

(
3
0

)
a

3
+
(

3
1

)
a

2
b +

(
3
2

)
ab

2
+
(

3
3

)
b

3

(a + b)
4
=

(4
0

)
a

4
+
(4

1

)
a

3
b +

(4
2

)
a

2
b

2
+
(4

3

)
ab

3
+
(4

4

)
b

4

(a + b)
5
=

(
5
0

)
a

5
+
(

5
1

)
a

4
b +

(
5
2

)
a

3
b

2
+
(

5
3

)
a

2
b

3
+
(

5
4

)
ab

4
+
(

5
5

)
b

5

(a + b)
6
=

(
6
0

)
a

6
+
(

6
1

)
a

5
b +

(
6
2

)
a

4
b

2
+
(

6
3

)
a

3
b

3
+
(

6
4

)
a

2
b

4
+
(

6
5

)
ab

5
+
(

6
6

)
b

6

· · ·
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Pascal’s Triangle (Cont.)

Retaining only the numeric coefficients we again obtain Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
· · ·

Pascal’s triangle has the following interesting properties:

1. The first and last number in each row is 1 (since
(

n
0

)
=
(

n
n

)
= 1).

2. Every other number in the array can be obtained by adding the two

numbers directly above it (since
(

n+1
k

)
=
(

n
k−1

)
+
(

n
k

)
).

3. The triangle has left/right mirror symmetry (since
(

n
k

)
=
(

n
n−k

)
).

4. The entries in each row sum to twice the value of the previous row.

Row n sums to the value 2
n

(counting rows starting from 0).
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Pascal’s Triangle Example Problem 1

Circle the coefficient corresponding to 6C3 in Pascal’s Triangle,

below. Verify using the formula for combinations that the value

shown is correct.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
· · ·

38



Pascal’s Triangle Example Problem 2

Calculate the following quantity without using pencil and paper or

calculator:

993
+ 3 × 992

+ 3 × 99 + 1 = ?

Answer: 1,000,000. Note that

993
+ 3 × 992

+ 3 × 99 + 1 = 99310
+ 3 × 99211

+ 3 × 99112
+ 99013

= (99 + 1)3

= 1003
= (102)3

= 106.
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