SPACE SYSTEMS/LORAL

Organization	Antenna RF Design	Classification	Unclassified
Date	May 9, 2001	Contract Number	
То	H. Luh	File Name	curvature.tex
From	P. Simon	Memo Number	AAS/01/00??/IRAD
Subject	Calculation of surface curvature for a surface parameterized as z = f(x, y).	Distribution	

This memo records the formulas for calculating the principal curvatures of a surface parameterized in the form z = f(x, y). The formulas are taken from Example 5 on page 162 of [1].

One first computes the Gaussian curvature

$$K = \frac{f_{xx}f_{yy} - f_{xy}^2}{\left(1 + f_x^2 + f_y^2\right)^2} \tag{1}$$

and mean curvature

$$H = \frac{\left(1 + f_x^2\right)f_{yy} + \left(1 + f_y^2\right)f_{xx} - 2f_xf_yf_{xy}}{2\left(1 + f_x^2 + f_y^2\right)^{3/2}}$$
(2)

The principal curvatures k_1 and k_2 are then found using

$$k_1 = H + \sqrt{H^2 - K} \tag{3}$$

$$k_2 = H - \sqrt{H^2 - K} \tag{4}$$

and the principal radii of curvature (without attached sign) are calculated as

$$r_i = |1/k_i|, \quad i = 1, 2.$$
 (5)

The minimum of the two principal radii of curvature is the minimum radius of curvature of the surface at the given point.

References

[1] M. P. do Carmo, *Differential Geometry of Curves and Surfaces*. New York: Prentiss-Hall, 1976.