SPACE SYSTEMS/LORAL

Organization	Antenna RF Design
Date	May 9, 2001
To	H. Luh
From	P. Simon
Subject	Calculation of surface curvature for
	a surface parameterized as

Classification
Contract Number
File Name curvature.tex
Memo Number AAS/01/00??/IRAD
Distribution

This memo records the formulas for calculating the principal curvatures of a surface parameterized in the form $z=f(x, y)$. The formulas are taken from Example 5 on page 162 of [1].

One first computes the Gaussian curvature

$$
\begin{equation*}
K=\frac{f_{x x} f_{y y}-f_{x y}^{2}}{\left(1+f_{x}^{2}+f_{y}^{2}\right)^{2}} \tag{1}
\end{equation*}
$$

and mean curvature

$$
\begin{equation*}
H=\frac{\left(1+f_{x}^{2}\right) f_{y y}+\left(1+f_{y}^{2}\right) f_{x x}-2 f_{x} f_{y} f_{x y}}{2\left(1+f_{x}^{2}+f_{y}^{2}\right)^{3 / 2}} \tag{2}
\end{equation*}
$$

The principal curvatures k_{1} and k_{2} are then found using

$$
\begin{align*}
& k_{1}=H+\sqrt{H^{2}-K} \tag{3}\\
& k_{2}=H-\sqrt{H^{2}-K} \tag{4}
\end{align*}
$$

and the principal radii of curvature (without attached sign) are calculated as

$$
\begin{equation*}
r_{i}=\left|1 / k_{i}\right|, \quad i=1,2 \tag{5}
\end{equation*}
$$

The minimum of the two principal radii of curvature is the minimum radius of curvature of the surface at the given point.

References

[1] M. P. do Carmo, Differential Geometry of Curves and Surfaces. New York: Prentiss-Hall, 1976.

