Solutions：AMC Prep for ACHS：Triangles

ACHS Math Competition Team

3 Feb 2009

Problem 1

The sides of a triangle have lengths 15,20 , and 25 . Find the length of the shortest altitude.

Problem 1

The sides of a triangle have lengths 15,20 , and 25 . Find the length of the shortest altitude.

First notice that this is a right triangle, so two of the altitudes are the legs, whose lengths are 15 and 20 . The third altitude, whose length is x, is the one drawn to the hypotenuse. The area of the triangle is $\frac{1}{2}(15)(20)=150$. Using 25 as the base and x as the altitude, we have

$$
\frac{1}{2} 25 x=150 \Longrightarrow x=\frac{300}{25}=12
$$

Problem 2

Points K, L, M, and N lie in the plane of the square $A B C D$ so that $A K B, B L C, C M D$, and $D N A$ are equilateral triangles. If $A B C D$ has an area of 16 , find the area of $K L M N$.

Problem 2

Points K, L, M, and N lie in the plane of the square $A B C D$ so that $A K B, B L C, C M D$, and $D N A$ are equilateral triangles. If $A B C D$ has an area of 16 , find the area of $K L M N$.

Quadrilateral $K L M N$ is a square because it has 90° rotational symmetry. which implies that each pair of adjacent sides is congruent and perpendicular.

Problem 2

Points K, L, M, and N lie in the plane of the square $A B C D$ so that $A K B, B L C, C M D$, and $D N A$ are equilateral triangles. If $A B C D$ has an area of 16 , find the area of $K L M N$.

Quadrilateral $K L M N$ is a square because it has 90° rotational symmetry. which implies that each pair of adjacent sides is congruent and perpendicular. Since $A B C D$ has sides of length 4 and K is $2 \sqrt{3}$ from side $\overline{A B}$, the length of the diagonal $\overline{K M}$ is $4+4 \sqrt{3}$.

Problem 2

Points K, L, M, and N lie in the plane of the square $A B C D$ so that $A K B, B L C, C M D$, and $D N A$ are equilateral triangles. If $A B C D$ has an area of 16 , find the area of $K L M N$.

Quadrilateral $K L M N$ is a square because it has 90° rotational symmetry. which implies that each pair of adjacent sides is congruent and perpendicular. Since $A B C D$ has sides of length 4 and K is $2 \sqrt{3}$ from side $\overline{A B}$, the length of the diagonal $\overline{K M}$ is $4+4 \sqrt{3}$. Thus the area is

$$
\frac{1}{2}(4+4 \sqrt{3})^{2}=32+16 \sqrt{3}
$$

Problem 3

Let $\triangle X O Y$ be a right triangle with $m \angle X O Y=90^{\circ}$. Let M and N be the midpoints of legs $O X$ and $O Y$, respectively. Given that $X N=19$ and $Y M=22$, find $X Y$.

Problem 3

Let $\triangle X O Y$ be a right triangle with $m \angle X O Y=90^{\circ}$. Let M and N be the midpoints of legs $O X$ and $O Y$, respectively. Given that $X N=19$ and $Y M=22$, find $X Y$.

Problem 3

Let $\triangle X O Y$ be a right triangle with $m \angle X O Y=90^{\circ}$. Let M and N be the midpoints of legs $O X$ and $O Y$, respectively. Given that $X N=19$ and $Y M=22$, find $X Y$.

Let $O M=a$ and $O N=b$. Then
$19^{2}=(2 a)^{2}+b^{2}$,

Problem 3

Let $\triangle X O Y$ be a right triangle with $m \angle X O Y=90^{\circ}$. Let M and N be the midpoints of legs $O X$ and $O Y$, respectively. Given that $X N=19$ and $Y M=22$, find $X Y$.

Let $O M=a$ and $O N=b$. Then

$$
19^{2}=(2 a)^{2}+b^{2}, \quad 22^{2}=a^{2}+(2 b)^{2}
$$

Problem 3

Let $\triangle X O Y$ be a right triangle with $m \angle X O Y=90^{\circ}$. Let M and N be the midpoints of legs $O X$ and $O Y$, respectively. Given that $X N=19$ and $Y M=22$, find $X Y$.

Let $O M=a$ and $O N=b$. Then

$$
19^{2}=(2 a)^{2}+b^{2}, \quad 22^{2}=a^{2}+(2 b)^{2}, \quad \Longrightarrow 5\left(a^{2}+b^{2}\right)=19^{2}+22^{2}=845
$$

Problem 3

Let $\triangle X O Y$ be a right triangle with $m \angle X O Y=90^{\circ}$. Let M and N be the midpoints of legs $O X$ and $O Y$, respectively. Given that $X N=19$ and $Y M=22$, find $X Y$.

Let $O M=a$ and $O N=b$. Then
$19^{2}=(2 a)^{2}+b^{2}, \quad 22^{2}=a^{2}+(2 b)^{2}, \quad \Longrightarrow 5\left(a^{2}+b^{2}\right)=19^{2}+22^{2}=845$

$$
M N=\sqrt{a^{2}+b^{2}}=\sqrt{845 / 5}=\sqrt{169}=13
$$

Problem 3

Let $\triangle X O Y$ be a right triangle with $m \angle X O Y=90^{\circ}$. Let M and N be the midpoints of legs $O X$ and $O Y$, respectively. Given that $X N=19$ and $Y M=22$, find $X Y$.

Let $O M=a$ and $O N=b$. Then
$19^{2}=(2 a)^{2}+b^{2}, \quad 22^{2}=a^{2}+(2 b)^{2}, \Longrightarrow 5\left(a^{2}+b^{2}\right)=19^{2}+22^{2}=845$

$$
M N=\sqrt{a^{2}+b^{2}}=\sqrt{845 / 5}=\sqrt{169}=13
$$

$$
X Y=2 M N=26
$$

Problem 4

Points A, B, C, and D lie on a line, in that order, with $A B=C D$ and $B C=12$. Point E is not on the line, and $B E=C E=10$. The perimeter of $\triangle A E D$ is twice that of $\triangle B E C$. Find $A B$.

Problem 4

Points A, B, C, and D lie on a line, in that order, with $A B=C D$ and $B C=12$. Point E is not on the line, and $B E=C E=10$. The perimeter of $\triangle A E D$ is twice that of $\triangle B E C$. Find $A B$.

Let H be the midpoint of $\overline{B C}$. Then $\overline{E H}$ is the perpendicular bisector of $\overline{A D}$, and $\triangle A E D$ is isosceles.

Problem 4

Points A, B, C, and D lie on a line, in that order, with $A B=C D$ and $B C=12$. Point E is not on the line, and $B E=C E=10$. The perimeter of $\triangle A E D$ is twice that of $\triangle B E C$. Find $A B$.

Let H be the midpoint of $\overline{B C}$. Then $\overline{E H}$ is the perpendicular bisector of $\overline{A D}$, and $\triangle A E D$ is isosceles.

Segment $\overline{E H}$ is the common altitude of isosceles triangles $\triangle A E D$ and $\triangle B E C$, and

Problem 4

Points A, B, C, and D lie on a line, in that order, with $A B=C D$ and $B C=12$. Point E is not on the line, and $B E=C E=10$. The perimeter of $\triangle A E D$ is twice that of $\triangle B E C$. Find $A B$.

Let H be the midpoint of $\overline{B C}$. Then $\overline{E H}$ is the perpendicular bisector of $\overline{A D}$, and $\triangle A E D$ is isosceles.

Segment $\overline{E H}$ is the common altitude of isosceles triangles $\triangle A E D$ and $\triangle B E C$, and $E H=\sqrt{10^{2}-6^{2}}=8$.

Problem 4

Points A, B, C, and D lie on a line, in that order, with $A B=C D$ and $B C=12$. Point E is not on the line, and $B E=C E=10$. The perimeter of $\triangle A E D$ is twice that of $\triangle B E C$. Find $A B$.

Let H be the midpoint of $\overline{B C}$. Then $\overline{E H}$ is the perpendicular bisector of $\overline{A D}$, and $\triangle A E D$ is isosceles.

Segment $\overline{E H}$ is the common altitude of isosceles triangles $\triangle A E D$ and $\triangle B E C$, and $E H=\sqrt{10^{2}-6^{2}}=8$. Let $A B=C D=x$ and $A E=E D=y$.

Problem 4

Points A, B, C, and D lie on a line, in that order, with $A B=C D$ and $B C=12$. Point E is not on the line, and $B E=C E=10$. The perimeter of $\triangle A E D$ is twice that of $\triangle B E C$. Find $A B$.

Let H be the midpoint of $\overline{B C}$. Then $\overline{E H}$ is the perpendicular bisector of $\overline{A D}$, and $\triangle A E D$ is isosceles.

Segment $\overline{E H}$ is the common altitude of isosceles triangles $\triangle A E D$ and $\triangle B E C$, and $E H=\sqrt{10^{2}-6^{2}}=8$. Let $A B=C D=x$ and $A E=E D=y$. Then $2 x+2 y+12=2(32)$,

Problem 4

Points A, B, C, and D lie on a line, in that order, with $A B=C D$ and $B C=12$. Point E is not on the line, and $B E=C E=10$. The perimeter of $\triangle A E D$ is twice that of $\triangle B E C$. Find $A B$.

Let H be the midpoint of $\overline{B C}$. Then $\overline{E H}$ is the perpendicular bisector of $\overline{A D}$, and $\triangle A E D$ is isosceles.

Segment $\overline{E H}$ is the common altitude of isosceles triangles $\triangle A E D$ and $\triangle B E C$, and $E H=\sqrt{10^{2}-6^{2}}=8$. Let $A B=C D=x$ and $A E=E D=y$. Then $2 x+2 y+12=2(32)$, so $y=26-x$.

Problem 4

Points A, B, C, and D lie on a line, in that order, with $A B=C D$ and $B C=12$. Point E is not on the line, and $B E=C E=10$. The perimeter of $\triangle A E D$ is twice that of $\triangle B E C$. Find $A B$.

Let H be the midpoint of $\overline{B C}$. Then $\overline{E H}$ is the perpendicular bisector of $\overline{A D}$, and $\triangle A E D$ is isosceles.

Segment $\overline{E H}$ is the common altitude of isosceles triangles $\triangle A E D$ and $\triangle B E C$, and $E H=\sqrt{10^{2}-6^{2}}=8$. Let $A B=C D=x$ and $A E=E D=y$. Then $2 x+2 y+12=2(32)$, so $y=26-x$. Thus,

$$
8^{2}+(x+6)^{2}=y^{2}=(26-x)^{2}
$$

Problem 4

Points A, B, C, and D lie on a line, in that order, with $A B=C D$ and $B C=12$. Point E is not on the line, and $B E=C E=10$. The perimeter of $\triangle A E D$ is twice that of $\triangle B E C$. Find $A B$.

Let H be the midpoint of $\overline{B C}$. Then $\overline{E H}$ is the perpendicular bisector of $\overline{A D}$, and $\triangle A E D$ is isosceles.

Segment $\overline{E H}$ is the common altitude of isosceles triangles $\triangle A E D$ and $\triangle B E C$, and $E H=\sqrt{10^{2}-6^{2}}=8$. Let $A B=C D=x$ and $A E=E D=y$. Then $2 x+2 y+12=2(32)$, so $y=26-x$. Thus,

$$
8^{2}+(x+6)^{2}=y^{2}=(26-x)^{2}
$$

and $x=9$.

Problem 5

How many non-congruent triangles with perimeter 7 have integer side lengths?

Problem 5

How many non-congruent triangles with perimeter 7 have integer side lengths?

First, compute the partitions of 7

Problem 5

How many non-congruent triangles with perimeter 7 have integer side lengths?

First, compute the partitions of 7 (combinations of positive integers that add up to 7) containing three elements.

Problem 5

How many non-congruent triangles with perimeter 7 have integer side lengths?

First, compute the partitions of 7 (combinations of positive integers that add up to 7) containing three elements. These are: $\{5,1,1\}$,

Problem 5

How many non-congruent triangles with perimeter 7 have integer side lengths?

First, compute the partitions of 7 (combinations of positive integers that add up to 7) containing three elements. These are: $\{5,1,1\}$, $\{4,2,1\}$,

Problem 5

How many non-congruent triangles with perimeter 7 have integer side lengths?

First, compute the partitions of 7 (combinations of positive integers that add up to 7) containing three elements. These are: $\{5,1,1\}$, $\{4,2,1\},\{3,3,1\}$,

Problem 5

How many non-congruent triangles with perimeter 7 have integer side lengths?

First, compute the partitions of 7 (combinations of positive integers that add up to 7) containing three elements. These are: $\{5,1,1\}$, $\{4,2,1\},\{3,3,1\}$, and $\{3,2,2\}$.

Problem 5

How many non-congruent triangles with perimeter 7 have integer side lengths?

First, compute the partitions of 7 (combinations of positive integers that add up to 7) containing three elements. These are: $\{5,1,1\}$, $\{4,2,1\},\{3,3,1\}$, and $\{3,2,2\}$. Each of these must satisfy the triangle inequality: The length of any side must be less than the sum of the other two sides but greater than their difference. Of the above 4 combinations, 5 is not less than $1+1$,

Problem 5

How many non-congruent triangles with perimeter 7 have integer side lengths?

First, compute the partitions of 7 (combinations of positive integers that add up to 7) containing three elements. These are: $\{5,1,1\}$, $\{4,2,1\},\{3,3,1\}$, and $\{3,2,2\}$. Each of these must satisfy the triangle inequality: The length of any side must be less than the sum of the other two sides but greater than their difference. Of the above 4 combinations, 5 is not less than $1+1$, and 4 is not less than $2+1$. The remaining 2 combinations constitute valid side lengths.

Problem 6

Points A, B, C, D, E, and F lie, in that order, on $\overline{A F}$, dividing it into five segments, each of length 1. Point G is not on line $\overline{A F}$. Point H lies on $\overline{G D}$, and point J lies on $\overline{G F}$. The line segments $\overline{H C}, \overline{J E}$, and $\overline{A G}$ are parallel. Find
 HC/JE.

Problem 6

Points A, B, C, D, E, and F lie, in that order, on $\overline{A F}$, dividing it into five segments, each of length 1. Point G is not on line $\overline{A F}$. Point H lies on $\overline{G D}$, and point J lies on $\overline{G F}$. The line segments $\overline{H C}, \overline{J E}$, and $\overline{A G}$ are parallel. Find
 HC/JE.

Since $\triangle A G D$ is similar to $\triangle C H D$, we have $H C / 1=A G / 3$.

Problem 6

Points A, B, C, D, E, and F lie, in that order, on $\overline{A F}$, dividing it into five segments, each of length 1. Point G is not on line $\overline{A F}$. Point H lies on $\overline{G D}$, and point J lies on $\overline{G F}$. The line segments $\overline{H C}, \overline{J E}$, and $\overline{A G}$ are parallel. Find
 HC/JE.

Since $\triangle A G D$ is similar to $\triangle C H D$, we have $H C / 1=A G / 3$. Also, $\triangle A G F$ is similar to $\triangle E J F$, so $J E / 1=A G / 5$.

Problem 6

Points A, B, C, D, E, and F lie, in that order, on $\overline{A F}$, dividing it into five segments, each of length 1. Point G is not on line $\overline{A F}$. Point H lies on $\overline{G D}$, and point J lies on $\overline{G F}$. The line segments $\overline{H C}, \overline{J E}$, and $\overline{A G}$ are parallel. Find
 HC/JE.

Since $\triangle A G D$ is similar to $\triangle C H D$, we have $H C / 1=A G / 3$. Also, $\triangle A G F$ is similar to $\triangle E J F$, so $J E / 1=A G / 5$. Therefore,

$$
\frac{H C}{J E}=\frac{A G / 3}{A G / 5}
$$

Problem 6

Points A, B, C, D, E, and F lie, in that order, on $\overline{A F}$, dividing it into five segments, each of length 1. Point G is not on line $\overline{A F}$. Point H lies on $\overline{G D}$, and point J lies on $\overline{G F}$. The line segments $\overline{H C}, \overline{J E}$, and $\overline{A G}$ are parallel. Find
 HC/JE.

Since $\triangle A G D$ is similar to $\triangle C H D$, we have $H C / 1=A G / 3$. Also, $\triangle A G F$ is similar to $\triangle E J F$, so $J E / 1=A G / 5$. Therefore,

$$
\frac{H C}{J E}=\frac{A G / 3}{A G / 5}=\frac{5}{3}
$$

