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Problem 4-2

On day 1, a boy spent 30% of his $D weekly pay. On day 2, he
spent 60% of the remainder. If this left him with $1 less than the
amount he spent on day 1, what is the value of D?
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Problem 4-2

On day 1, a boy spent 30% of his $D weekly pay. On day 2, he
spent 60% of the remainder. If this left him with $1 less than the
amount he spent on day 1, what is the value of D?

The remainder after day 1 is (1 − 0.3)D = 0.7D.
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Problem 4-2

On day 1, a boy spent 30% of his $D weekly pay. On day 2, he
spent 60% of the remainder. If this left him with $1 less than the
amount he spent on day 1, what is the value of D?

The remainder after day 1 is (1 − 0.3)D = 0.7D. The remainder
after day 2 is (1 − 0.6) × 0.7D = 0.4 × 0.7D = 0.28D.
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Problem 4-2

On day 1, a boy spent 30% of his $D weekly pay. On day 2, he
spent 60% of the remainder. If this left him with $1 less than the
amount he spent on day 1, what is the value of D?

The remainder after day 1 is (1 − 0.3)D = 0.7D. The remainder
after day 2 is (1 − 0.6) × 0.7D = 0.4 × 0.7D = 0.28D.

So

0.28D = 0.3D − 1
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Problem 4-2

On day 1, a boy spent 30% of his $D weekly pay. On day 2, he
spent 60% of the remainder. If this left him with $1 less than the
amount he spent on day 1, what is the value of D?

The remainder after day 1 is (1 − 0.3)D = 0.7D. The remainder
after day 2 is (1 − 0.6) × 0.7D = 0.4 × 0.7D = 0.28D.

So

0.28D = 0.3D − 1 ⇐⇒ 1 = (0.3 − 0.28)D
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Problem 4-2

On day 1, a boy spent 30% of his $D weekly pay. On day 2, he
spent 60% of the remainder. If this left him with $1 less than the
amount he spent on day 1, what is the value of D?

The remainder after day 1 is (1 − 0.3)D = 0.7D. The remainder
after day 2 is (1 − 0.6) × 0.7D = 0.4 × 0.7D = 0.28D.

So

0.28D = 0.3D − 1 ⇐⇒ 1 = (0.3 − 0.28)D = 0.02D
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Problem 4-2

On day 1, a boy spent 30% of his $D weekly pay. On day 2, he
spent 60% of the remainder. If this left him with $1 less than the
amount he spent on day 1, what is the value of D?

The remainder after day 1 is (1 − 0.3)D = 0.7D. The remainder
after day 2 is (1 − 0.6) × 0.7D = 0.4 × 0.7D = 0.28D.

So

0.28D = 0.3D − 1 ⇐⇒ 1 = (0.3 − 0.28)D = 0.02D ⇐⇒ D = 50

13



Problem 4-3

Write, in simplest form, the value of the quotient
1998 + (342)(1997)

1999
.
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Problem 4-3

Write, in simplest form, the value of the quotient
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1999
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Since 342 = 18 × 19, then
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Problem 4-4

Four congruent circles are placed in a
4 × 4 square so that each is tangent to
two sides of the square and to two of
the other circles. A smaller fifth circle is
drawn tangent to each of the other four
circles, as shown. How long is the
radius of the fifth circle?
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Four congruent circles are placed in a
4 × 4 square so that each is tangent to
two sides of the square and to two of
the other circles. A smaller fifth circle is
drawn tangent to each of the other four
circles, as shown. How long is the
radius of the fifth circle?

The large circles have diameter 2.
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4 × 4 square so that each is tangent to
two sides of the square and to two of
the other circles. A smaller fifth circle is
drawn tangent to each of the other four
circles, as shown. How long is the
radius of the fifth circle?

�

� �

�

The large circles have diameter 2. Draw a square (of side length 2)
joining the centers of the large circles.
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Problem 4-4

Four congruent circles are placed in a
4 × 4 square so that each is tangent to
two sides of the square and to two of
the other circles. A smaller fifth circle is
drawn tangent to each of the other four
circles, as shown. How long is the
radius of the fifth circle?

�

� �

�

The large circles have diameter 2. Draw a square (of side length 2)
joining the centers of the large circles. The diagonal of the square
has length 2

√
2, so if the radius of the small circle is r , then
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Problem 4-5

What is the greatest possible value of a for which there is at least
one real solution (x , y) to the system x2 + y2 = 1 and x2y2 = a?
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Problem 4-5

What is the greatest possible value of a for which there is at least
one real solution (x , y) to the system x2 + y2 = 1 and x2y2 = a?

Method I
If two numbers have a fixed sum, their product is maximized when
each is equal to half that sum.
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Problem 4-5

What is the greatest possible value of a for which there is at least
one real solution (x , y) to the system x2 + y2 = 1 and x2y2 = a?

Method I
If two numbers have a fixed sum, their product is maximized when
each is equal to half that sum. Since x2 + y2 = 1, when
x2 = y2 = 1

2 , the product a = x2y2 takes its maximum value, 1
4 .
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Problem 4-5

What is the greatest possible value of a for which there is at least
one real solution (x , y) to the system x2 + y2 = 1 and x2y2 = a?

Method I
If two numbers have a fixed sum, their product is maximized when
each is equal to half that sum. Since x2 + y2 = 1, when
x2 = y2 = 1

2 , the product a = x2y2 takes its maximum value, 1
4 .

Method II
y2 = 1 − x2 so a = x2y2 = x2(1 − x2) = x2 − x4.
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Problem 4-5

What is the greatest possible value of a for which there is at least
one real solution (x , y) to the system x2 + y2 = 1 and x2y2 = a?

Method I
If two numbers have a fixed sum, their product is maximized when
each is equal to half that sum. Since x2 + y2 = 1, when
x2 = y2 = 1

2 , the product a = x2y2 takes its maximum value, 1
4 .

Method II
y2 = 1 − x2 so a = x2y2 = x2(1 − x2) = x2 − x4. So x4 − x2 = −a.
Completing the square, this can be written
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each is equal to half that sum. Since x2 + y2 = 1, when
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What is the greatest possible value of a for which there is at least
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Problem 4-5

What is the greatest possible value of a for which there is at least
one real solution (x , y) to the system x2 + y2 = 1 and x2y2 = a?

Method I
If two numbers have a fixed sum, their product is maximized when
each is equal to half that sum. Since x2 + y2 = 1, when
x2 = y2 = 1

2 , the product a = x2y2 takes its maximum value, 1
4 .

Method II
y2 = 1 − x2 so a = x2y2 = x2(1 − x2) = x2 − x4. So x4 − x2 = −a.
Completing the square, this can be written
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The maximum possible value for a is 1
4 , which occurs when

x2 = 1/2.
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Problem 4-6

A hound was chasing a fox. Whenever the hound took 4 leaps, the
fox took 5. If 3 hound leaps cover the same distance as 4 fox
leaps, and the fox’s head start was equal to 90 hound leaps, how
many leaps did the hound need to catch the fox?
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Problem 4-6

A hound was chasing a fox. Whenever the hound took 4 leaps, the
fox took 5. If 3 hound leaps cover the same distance as 4 fox
leaps, and the fox’s head start was equal to 90 hound leaps, how
many leaps did the hound need to catch the fox?

Let the distance of a hound leap be h and that of a fox leap be f .
Then 3h = 4f , or f = 3h/4.
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A hound was chasing a fox. Whenever the hound took 4 leaps, the
fox took 5. If 3 hound leaps cover the same distance as 4 fox
leaps, and the fox’s head start was equal to 90 hound leaps, how
many leaps did the hound need to catch the fox?

Let the distance of a hound leap be h and that of a fox leap be f .
Then 3h = 4f , or f = 3h/4. The head start distance is 90h.
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Problem 4-6

A hound was chasing a fox. Whenever the hound took 4 leaps, the
fox took 5. If 3 hound leaps cover the same distance as 4 fox
leaps, and the fox’s head start was equal to 90 hound leaps, how
many leaps did the hound need to catch the fox?

Let the distance of a hound leap be h and that of a fox leap be f .
Then 3h = 4f , or f = 3h/4. The head start distance is 90h. When
the hound takes 4 leaps to cover a distance of 4h, the fox takes 5
leaps to cover a distance of 5f = 15h/4. So with each leap, the
hound reduces the gap by h − 15h/16 = h/16.
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Problem 4-6

A hound was chasing a fox. Whenever the hound took 4 leaps, the
fox took 5. If 3 hound leaps cover the same distance as 4 fox
leaps, and the fox’s head start was equal to 90 hound leaps, how
many leaps did the hound need to catch the fox?

Let the distance of a hound leap be h and that of a fox leap be f .
Then 3h = 4f , or f = 3h/4. The head start distance is 90h. When
the hound takes 4 leaps to cover a distance of 4h, the fox takes 5
leaps to cover a distance of 5f = 15h/4. So with each leap, the
hound reduces the gap by h − 15h/16 = h/16. So the number of
leaps needed to catch the fox is 16 × 90 = 1440.
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