Math League Contest \＃2，December 1， 1998

ACHS Math Competition Team

October 13， 2009

Problem 2-1

Triangle T is not equilateral. If every side of T has an integral length, what is the least possible number of perimeter of triangle T ?

Problem 2-1

Triangle T is not equilateral. If every side of T has an integral length, what is the least possible number of perimeter of triangle T ?

Since T is not equilateral, the side lengths cannot be $(1,1,1)$.

Problem 2-1

Triangle T is not equilateral. If every side of T has an integral length, what is the least possible number of perimeter of triangle T ?

Since T is not equilateral, the side lengths cannot be $(1,1,1)$.
Also, $(1,1,2)$ is not possible, since the sum of any two lengths must be greater than the remaining length.

Problem 2-1

Triangle T is not equilateral. If every side of T has an integral length, what is the least possible number of perimeter of triangle T ?

Since T is not equilateral, the side lengths cannot be $(1,1,1)$.
Also, $(1,1,2)$ is not possible, since the sum of any two lengths must be greater than the remaining length.

The next possibility is $(1,2,2)$ which does represent the side lengths of a triangle, with perimeter 5 .

Problem 2-2

When choosing from a list of 4 different whole numbers, I can select 3 whose product is 74 , and you can select three whose product is 54 . What is the product of all four numbers?

Problem 2-2

When choosing from a list of 4 different whole numbers, I can select 3 whose product is 74 , and you can select three whose product is 54 . What is the product of all four numbers?

Factoring the two numbers using only a total of four distinct factors, we have

$$
74=1 \times 2 \times 37
$$

Problem 2-2

When choosing from a list of 4 different whole numbers, I can select 3 whose product is 74 , and you can select three whose product is 54 . What is the product of all four numbers?

Factoring the two numbers using only a total of four distinct factors, we have

$$
74=1 \times 2 \times 37, \quad 54=1 \times 2 \times 27
$$

Problem 2-2

When choosing from a list of 4 different whole numbers, I can select 3 whose product is 74 , and you can select three whose product is 54 . What is the product of all four numbers?

Factoring the two numbers using only a total of four distinct factors, we have

$$
74=1 \times 2 \times 37, \quad 54=1 \times 2 \times 27
$$

so that the product of all 4 factors is

$$
1 \times 2 \times 37 \times 27=1998
$$

Problem 2-3

What is the only positive value of x that satisfies $x^{3}+x^{4}=x^{5} ?$

Problem 2-3

What is the only positive value of x that satisfies $x^{3}+x^{4}=x^{5}$?
Factoring x^{3} out of both sides yields $1+x=x^{2}$ or

Problem 2-3

What is the only positive value of x that satisfies $x^{3}+x^{4}=x^{5}$?
Factoring x^{3} out of both sides yields $1+x=x^{2}$ or

$$
x^{2}-x-1=0
$$

Problem 2-3

What is the only positive value of x that satisfies $x^{3}+x^{4}=x^{5}$?
Factoring x^{3} out of both sides yields $1+x=x^{2}$ or

$$
x^{2}-x-1=0
$$

From the quadratic formula, the roots are

$$
x=\frac{1 \pm \sqrt{1+4}}{2}=\frac{1 \pm \sqrt{5}}{2}
$$

The positive root is $\frac{1+\sqrt{5}}{2}$.

Problem 2-4

A, B, C, and D are the centers of four congruent circles, tangent to each other as shown. If $A C=B D=12$, what is the area of one of the four circles?

Problem 2-4

A, B, C, and D are the centers of four congruent circles, tangent to each other as shown. If $A C=B D=12$, what is the area of one of the four circles?

Each of the two red dashed lines has length $2 r$, where r is the radius of the circles.
Applying the Pythagorean theorem to
$\triangle A B C$, we obtain

$$
(2 r)^{2}+(2 r)^{2}=12^{2} \Longrightarrow 8 r^{2}=144 \Longrightarrow r^{2}=18
$$

Therefore, the area of each of the circles is

$$
\pi r^{2}=18 \pi
$$

Problem 2-4

A, B, C, and D are the centers of four congruent circles, tangent to each other as shown. If $A C=B D=12$, what is the area of one of the four circles?

Each of the two red dashed lines has length $2 r$, where r is the radius of the circles.
Applying the Pythagorean theorem to $\triangle A B C$, we obtain

$$
(2 r)^{2}+(2 r)^{2}=12^{2} \Longrightarrow 8 r^{2}=144 \Longrightarrow r^{2}=18
$$

Therefore, the area of each of the circles is

$$
\pi r^{2}=18 \pi
$$

Or simply note that $\sqrt{2} \times 2 r=12$ and proceed to the same solution.

Problem 2-5

What are all the values of x that satisfy $\sqrt{x^{2}-3 x+2}<x+3$?

Problem 2-5

What are all the values of x that satisfy $\sqrt{x^{2}-3 x+2}<x+3$?
Squaring both sides,

$$
x^{2}-3 x+2<x^{2}+6 x+9
$$

Problem 2-5

What are all the values of x that satisfy $\sqrt{x^{2}-3 x+2}<x+3$?
Squaring both sides,

$$
x^{2}-3 x+2<x^{2}+6 x+9 \Longrightarrow-7<9 x \Longrightarrow x>-\frac{7}{9}
$$

which is one condition.

Problem 2-5

What are all the values of x that satisfy $\sqrt{x^{2}-3 x+2}<x+3$?
Squaring both sides,

$$
x^{2}-3 x+2<x^{2}+6 x+9 \Longrightarrow-7<9 x \Longrightarrow x>-\frac{7}{9}
$$

which is one condition. But we must also ensure that the original radicand is nonnegative:

$$
0 \leq x^{2}-3 x+2
$$

Problem 2-5

What are all the values of x that satisfy $\sqrt{x^{2}-3 x+2}<x+3$?
Squaring both sides,

$$
x^{2}-3 x+2<x^{2}+6 x+9 \Longrightarrow-7<9 x \Longrightarrow x>-\frac{7}{9}
$$

which is one condition. But we must also ensure that the original radicand is nonnegative:

$$
0 \leq x^{2}-3 x+2=(x-1)(x-2)
$$

Problem 2-5

What are all the values of x that satisfy $\sqrt{x^{2}-3 x+2}<x+3$?
Squaring both sides,

$$
x^{2}-3 x+2<x^{2}+6 x+9 \Longrightarrow-7<9 x \Longrightarrow x>-\frac{7}{9}
$$

which is one condition. But we must also ensure that the original radicand is nonnegative:

$$
0 \leq x^{2}-3 x+2=(x-1)(x-2) \Longrightarrow x \geq 2 \text { or } x \leq 1
$$

Problem 2-5

What are all the values of x that satisfy $\sqrt{x^{2}-3 x+2}<x+3$?
Squaring both sides,

$$
x^{2}-3 x+2<x^{2}+6 x+9 \Longrightarrow-7<9 x \Longrightarrow x>-\frac{7}{9}
$$

which is one condition. But we must also ensure that the original radicand is nonnegative:

$$
0 \leq x^{2}-3 x+2=(x-1)(x-2) \Longrightarrow x \geq 2 \text { or } x \leq 1
$$

The set of x satisfying both these conditions can be written as

$$
\left\{x \left\lvert\,-\frac{7}{9}<x \leq 1\right.\right\} \cup\{x \mid x \geq 2\}
$$

Problem 2-6

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

Problem 2-6

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

How to compute area of triangle $M N A_{1}$?

Problem 2-6

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

How to compute area of triangle $M N A_{1}$?
Extend $\overline{N M}$ till it meets the x-axis at B : $(-2,0)$. Then
$5=\operatorname{Area}\left(\triangle M N A_{1}\right)$

Problem 2-6

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

How to compute area of triangle $M N A_{1}$?
Extend $\overline{N M}$ till it meets the x-axis at $B:(-2,0)$. Then

$$
\begin{aligned}
5 & =\operatorname{Area}\left(\triangle M N A_{1}\right) \\
& =\operatorname{Area}\left(\triangle B N A_{1}\right)-\operatorname{Area}\left(\triangle B M A_{1}\right)
\end{aligned}
$$

Problem 2-6

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

How to compute area of triangle $M N A_{1}$?
Extend $\overline{N M}$ till it meets the x-axis at $B:(-2,0)$. Then

$$
\begin{aligned}
5 & =\operatorname{Area}\left(\triangle M N A_{1}\right) \\
& =\operatorname{Area}\left(\triangle B N A_{1}\right)-\operatorname{Area}\left(\triangle B M A_{1}\right) \\
& =\frac{1}{2}\left(-2-x_{1}\right) 4-\frac{1}{2}\left(-2-x_{1}\right) 2
\end{aligned}
$$

Problem 2-6

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

How to compute area of triangle $M N A_{1}$?
Extend $\overline{N M}$ till it meets the x-axis at $B:(-2,0)$. Then

$$
\begin{aligned}
5 & =\operatorname{Area}\left(\triangle M N A_{1}\right) \\
& =\operatorname{Area}\left(\triangle B N A_{1}\right)-\operatorname{Area}\left(\triangle B M A_{1}\right) \\
& =\frac{1}{2}\left(-2-x_{1}\right) 4-\frac{1}{2}\left(-2-x_{1}\right) 2 \\
& =\left(-2-x_{1}\right)
\end{aligned}
$$

Problem 2-6

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

How to compute area of triangle $M N A_{1}$?
Extend $\overline{N M}$ till it meets the x-axis at $B:(-2,0)$. Then

$$
\begin{aligned}
5 & =\operatorname{Area}\left(\triangle M N A_{1}\right) \\
& =\operatorname{Area}\left(\triangle B N A_{1}\right)-\operatorname{Area}\left(\triangle B M A_{1}\right) \\
& =\frac{1}{2}\left(-2-x_{1}\right) 4-\frac{1}{2}\left(-2-x_{1}\right) 2 \\
& =\left(-2-x_{1}\right)
\end{aligned}
$$

so that $x_{1}=-7$.

Problem 2-6 (Cont.)

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

Similarly, if A_{2} is placed to the right of B, then

$$
5=\operatorname{Area}\left(\triangle M N A_{2}\right)
$$

Problem 2-6 (Cont.)

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

Similarly, if A_{2} is placed to the right of B, then

$$
\begin{aligned}
5 & =\operatorname{Area}\left(\triangle M N A_{2}\right) \\
& =\operatorname{Area}\left(\triangle B N A_{2}\right)-\operatorname{Area}\left(\triangle B M A_{2}\right)
\end{aligned}
$$

Problem 2-6 (Cont.)

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

Similarly, if A_{2} is placed to the right of B, then

$$
\begin{aligned}
5 & =\operatorname{Area}\left(\triangle M N A_{2}\right) \\
& =\operatorname{Area}\left(\triangle B N A_{2}\right)-\operatorname{Area}\left(\triangle B M A_{2}\right) \\
& =\frac{1}{2}\left(x_{2}+2\right) 4-\frac{1}{2}\left(x_{2}+2\right) 2
\end{aligned}
$$

Problem 2-6 (Cont.)

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

Similarly, if A_{2} is placed to the right of B, then

$$
\begin{aligned}
5 & =\operatorname{Area}\left(\triangle M N A_{2}\right) \\
& =\operatorname{Area}\left(\triangle B N A_{2}\right)-\operatorname{Area}\left(\triangle B M A_{2}\right) \\
& =\frac{1}{2}\left(x_{2}+2\right) 4-\frac{1}{2}\left(x_{2}+2\right) 2 \\
& =\left(x_{2}+2\right)
\end{aligned}
$$

Problem 2-6 (Cont.)

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

Similarly, if A_{2} is placed to the right of B, then

$$
\begin{aligned}
5 & =\operatorname{Area}\left(\triangle M N A_{2}\right) \\
& =\operatorname{Area}\left(\triangle B N A_{2}\right)-\operatorname{Area}\left(\triangle B M A_{2}\right) \\
& =\frac{1}{2}\left(x_{2}+2\right) 4-\frac{1}{2}\left(x_{2}+2\right) 2 \\
& =\left(x_{2}+2\right)
\end{aligned}
$$

so that $x_{2}=3$.

Problem 2-6 (Cont.)

The area of a triangle is 5 . Two of its vertices are at $M(1,2)$ and $N(4,4)$. Its third vertex A is on the x-axis. What are all possible coordinates of this 3rd vertex?

Similarly, if A_{2} is placed to the right of B, then

$$
\begin{aligned}
5 & =\operatorname{Area}\left(\triangle M N A_{2}\right) \\
& =\operatorname{Area}\left(\triangle B N A_{2}\right)-\operatorname{Area}\left(\triangle B M A_{2}\right) \\
& =\frac{1}{2}\left(x_{2}+2\right) 4-\frac{1}{2}\left(x_{2}+2\right) 2 \\
& =\left(x_{2}+2\right)
\end{aligned}
$$

so that $x_{2}=3$. The solution is therefore the pair of points $(-7,0)$ and $(3,0)$.

