Math League Contest \#1, October 27, 1998

ACHS Math Competition Team

November 10, 2010

Problem 1-1

In 4 talks, each at least 1 hour long, I spoke for a total of 5 hours. What was the maximum possible length of my longest talk, in minutes?

Problem 1-1

In 4 talks, each at least 1 hour long, I spoke for a total of 5 hours.
What was the maximum possible length of my longest talk, in minutes?

If 3 of the talks are 1 hour each, then the 4 th talk will be as long as possible: 2 hours or 120 minutes.

Problem 1-2

Whenever the number $66 \ldots 66$, which consists of only 6 's, has twice as many digits as the number $33 \ldots 33$, which consists of only 3 's, the product ($66 \ldots 66$)(33 . . 33) does not contain the digit d. What are all five possible values of d.

Problem 1-2

Whenever the number $66 \ldots 66$, which consists of only 6 's, has twice as many digits as the number $33 \ldots 33$, which consists of only 3 's, the product ($66 \ldots 66$)(33 . . 33) does not contain the digit d. What are all five possible values of d.

Since $6666 \times 33=219978$ we see that the product can contain the digits $1,2,7,8$, and 9 .

Problem 1-2

Whenever the number $66 \ldots 66$, which consists of only 6 's, has twice as many digits as the number $33 \ldots 33$, which consists of only 3 's, the product ($66 \ldots 66$)(33 . . 33) does not contain the digit d. What are all five possible values of d.

Since $6666 \times 33=219978$ we see that the product can contain the digits $1,2,7,8$, and 9 . Since we are told that there are five digits which can not appear, they must be the remaining five digits: 0,3 , 4,5 , and 6 .

Problem 1-3

The line $2 y-3 x=12$ intersects the x-axis at A and the y-axis at B. For what value of $k>0$ will a line through B intersect the x-axis at $C:(k, 0)$ so that the area of $\triangle A B C$ is 21 ?

Problem 1-3

The line $2 y-3 x=12$ intersects the x-axis at A and the y-axis at B. For what value of $k>0$ will a line through B intersect the x-axis at $C:(k, 0)$ so that the area of $\triangle A B C$ is 21 ?

Problem 1-3

The line $2 y-3 x=12$ intersects the x-axis at A and the y-axis at B. For what value of $k>0$ will a line through B intersect the x-axis at $C:(k, 0)$ so that the area of $\triangle A B C$ is 21 ?

Area $\triangle A B C=21=\frac{1}{2} \times 6 \times(4+k)$

Problem 1-3

The line $2 y-3 x=12$ intersects the x-axis at A and the y-axis at B. For what value of $k>0$ will a line through B intersect the x-axis at $C:(k, 0)$ so that the area of $\triangle A B C$ is 21 ?

$$
\begin{gathered}
\text { Area } \triangle A B C=21=\frac{1}{2} \times 6 \times(4+k) \\
k=\frac{2 \times 21}{6}-4=3
\end{gathered}
$$

Problem 1-4

At 6 o'clock, the tip of a clock's hour hand was 23 cm from the tip of its minute hand. At 9 o'clock, this distance was only 17 cm . By how many cm does the minute hand's length exceed the hour hand's length?

Problem 1-4

At 6 o'clock, the tip of a clock's hour hand was 23 cm from the tip of its minute hand. At 9 o'clock, this distance was only 17 cm . By how many cm does the minute hand's length exceed the hour hand's length?

Let m and h be the lengths of the minute and hour hands, respectively.

Problem 1-4

At 6 o'clock, the tip of a clock's hour hand was 23 cm from the tip of its minute hand. At 9 o'clock, this distance was only 17 cm . By how many cm does the minute hand's length exceed the hour hand's length?

Let m and h be the lengths of the minute and hour hands, respectively. Then $m+h=23$, and

Problem 1-4

At 6 o'clock, the tip of a clock's hour hand was 23 cm from the tip of its minute hand. At 9 o'clock, this distance was only 17 cm . By how many cm does the minute hand's length exceed the hour hand's length?

Let m and h be the lengths of the minute and hour hands, respectively. Then $m+h=23$, and $m^{2}+h^{2}=17^{2}=289$.

Problem 1-4

At 6 o'clock, the tip of a clock's hour hand was 23 cm from the tip of its minute hand. At 9 o'clock, this distance was only 17 cm . By how many cm does the minute hand's length exceed the hour hand's length?

Let m and h be the lengths of the minute and hour hands, respectively. Then $m+h=23$, and $m^{2}+h^{2}=17^{2}=289$. Squaring the first equation yields $m^{2}+2 m h+h^{2}=23^{2}=529$.

Problem 1-4

At 6 o'clock, the tip of a clock's hour hand was 23 cm from the tip of its minute hand. At 9 o'clock, this distance was only 17 cm . By how many cm does the minute hand's length exceed the hour hand's length?

Let m and h be the lengths of the minute and hour hands, respectively. Then $m+h=23$, and $m^{2}+h^{2}=17^{2}=289$. Squaring the first equation yields $m^{2}+2 m h+h^{2}=23^{2}=529$. Subtracting the second equation, we obtain $2 m h=529-289=240$.

Problem 1-4

At 6 o'clock, the tip of a clock's hour hand was 23 cm from the tip of its minute hand. At 9 o'clock, this distance was only 17 cm . By how many cm does the minute hand's length exceed the hour hand's length?

Let m and h be the lengths of the minute and hour hands, respectively. Then $m+h=23$, and $m^{2}+h^{2}=17^{2}=289$. Squaring the first equation yields $m^{2}+2 m h+h^{2}=23^{2}=529$. Subtracting the second equation, we obtain $2 m h=529-289=240$. Then

$$
\left(m^{2}+h^{2}\right)-2 m h=17^{2}-240
$$

Problem 1-4

At 6 o'clock, the tip of a clock's hour hand was 23 cm from the tip of its minute hand. At 9 o'clock, this distance was only 17 cm . By how many cm does the minute hand's length exceed the hour hand's length?

Let m and h be the lengths of the minute and hour hands, respectively. Then $m+h=23$, and $m^{2}+h^{2}=17^{2}=289$. Squaring the first equation yields $m^{2}+2 m h+h^{2}=23^{2}=529$. Subtracting the second equation, we obtain $2 m h=529-289=240$. Then

$$
\left(m^{2}+h^{2}\right)-2 m h=17^{2}-240=(m-h)^{2}=49
$$

Problem 1-4

At 6 o'clock, the tip of a clock's hour hand was 23 cm from the tip of its minute hand. At 9 o'clock, this distance was only 17 cm . By how many cm does the minute hand's length exceed the hour hand's length?

Let m and h be the lengths of the minute and hour hands, respectively. Then $m+h=23$, and $m^{2}+h^{2}=17^{2}=289$. Squaring the first equation yields $m^{2}+2 m h+h^{2}=23^{2}=529$. Subtracting the second equation, we obtain $2 m h=529-289=240$. Then

$$
\left(m^{2}+h^{2}\right)-2 m h=17^{2}-240=(m-h)^{2}=49
$$

so that

$$
m-h=7
$$

Problem 1-5

The roots (real and imaginary) of the equation $x^{3}+78 x+666=0$ are a, b, and c. What is the value of $a^{3}+b^{3}+c^{3}$?

Problem 1-5

The roots (real and imaginary) of the equation $x^{3}+78 x+666=0$ are a, b, and c. What is the value of $a^{3}+b^{3}+c^{3}$?

We begin by noting that

$$
x^{3}+78 x+666=(x-a)(x-b)(x-c)
$$

Problem 1-5

The roots (real and imaginary) of the equation $x^{3}+78 x+666=0$ are a, b, and c. What is the value of $a^{3}+b^{3}+c^{3}$?

We begin by noting that

$$
x^{3}+78 x+666=x^{3}-(a+b+c) x^{2}+(a b+a c+b c) x-a b c
$$

Problem 1-5

The roots (real and imaginary) of the equation $x^{3}+78 x+666=0$ are a, b, and c. What is the value of $a^{3}+b^{3}+c^{3}$?

We begin by noting that

$$
x^{3}+78 x+666=x^{3}-(a+b+c) x^{2}+(a b+a c+b c) x-a b c
$$

Note that $a+b+c=0$ since there is no x^{2} term on the left-hand side.

Problem 1-5

The roots (real and imaginary) of the equation $x^{3}+78 x+666=0$ are a, b, and c. What is the value of $a^{3}+b^{3}+c^{3}$?

We begin by noting that

$$
x^{3}+78 x+666=x^{3}-(a+b+c) x^{2}+(a b+a c+b c) x-a b c
$$

Note that $a+b+c=0$ since there is no x^{2} term on the left-hand side.

Solving the original equation for x^{3} yields $x^{3}=-78 x-666$. This is true for each of the roots, so

$$
a^{3}+b^{3}+c^{3}=-78(a+b+c)-3(666)
$$

Problem 1-5

The roots (real and imaginary) of the equation $x^{3}+78 x+666=0$ are a, b, and c. What is the value of $a^{3}+b^{3}+c^{3}$?

We begin by noting that

$$
x^{3}+78 x+666=x^{3}-(a+b+c) x^{2}+(a b+a c+b c) x-a b c
$$

Note that $a+b+c=0$ since there is no x^{2} term on the left-hand side.

Solving the original equation for x^{3} yields $x^{3}=-78 x-666$. This is true for each of the roots, so

$$
a^{3}+b^{3}+c^{3}=-78(a+b+c)-3(666)=-3(666)=-1998
$$

Problem 1-6

If the minimum number of "Friday the 13th's" that can occur in a calendar year is m and the maximum number of "Friday the 13th's" that can occur in a calendar year is M, what is the ordered pair (m, M) ?

Problem 1-6

If the minimum number of "Friday the 13th's" that can occur in a calendar year is m and the maximum number of "Friday the 13th's" that can occur in a calendar year is M, what is the ordered pair (m, M) ?

The 13th day of a month will fall on a Friday if and only if the first day of the month is a Sunday.

Problem 1-6

If the minimum number of "Friday the 13th's" that can occur in a calendar year is m and the maximum number of "Friday the 13th's" that can occur in a calendar year is M, what is the ordered pair (m, M) ?

The 13th day of a month will fall on a Friday if and only if the first day of the month is a Sunday. Separate the months by the rule that months A and B fall into the same group if and only if the first day of month A falls on the same day of the week as the first day of month B.

Problem 1-6

If the minimum number of "Friday the 13th's" that can occur in a calendar year is m and the maximum number of "Friday the 13th's" that can occur in a calendar year is M, what is the ordered pair (m, M) ?

The 13th day of a month will fall on a Friday if and only if the first day of the month is a Sunday. Separate the months by the rule that months A and B fall into the same group if and only if the first day of month A falls on the same day of the week as the first day of month B.
For a non-leap year, there are 7 groupings: \{Jan, Oct\}, \{Feb, Mar, Nov\}, \{Apr, Jul\}, \{May\}, \{Jun\}, \{Aug\}, and \{Sep, Dec\}.

Problem 1-6

If the minimum number of "Friday the 13th's" that can occur in a calendar year is m and the maximum number of "Friday the 13th's" that can occur in a calendar year is M, what is the ordered pair (m, M) ?

The 13th day of a month will fall on a Friday if and only if the first day of the month is a Sunday. Separate the months by the rule that months A and B fall into the same group if and only if the first day of month A falls on the same day of the week as the first day of month B.
For a non-leap year, there are 7 groupings: \{Jan, Oct\}, \{Feb, Mar, Nov\}, \{Apr, Jul\}, \{May\}, \{Jun\}, \{Aug\}, and \{Sep, Dec\}.
For a leap year, there are 7 different groupings: \{ Jan,Apr,Jul\}, \{Feb, Aug\}, \{Mar, Nov \},\{May \},\{Jun \},\{Sep, Dec \},and \{Oct \}.

Problem 1-6

If the minimum number of "Friday the 13th's" that can occur in a calendar year is m and the maximum number of "Friday the 13th's" that can occur in a calendar year is M, what is the ordered pair (m, M) ?

The 13th day of a month will fall on a Friday if and only if the first day of the month is a Sunday. Separate the months by the rule that months A and B fall into the same group if and only if the first day of month A falls on the same day of the week as the first day of month B.
For a non-leap year, there are 7 groupings: \{Jan, Oct\}, \{Feb, Mar, Nov\}, \{Apr, Jul\}, \{May\}, \{Jun\}, \{Aug\}, and \{Sep, Dec\}.
For a leap year, there are 7 different groupings: \{ Jan,Apr,Jul\}, \{Feb, Aug\}, \{Mar, Nov \},\{May \},\{Jun \},\{Sep, Dec \},and \{Oct \}.
For both leap and non-leap years, the groups contain at least 1 month and at most 3 months.

Problem 1-6

If the minimum number of "Friday the 13th's" that can occur in a calendar year is m and the maximum number of "Friday the 13th's" that can occur in a calendar year is M, what is the ordered pair (m, M) ?

The 13th day of a month will fall on a Friday if and only if the first day of the month is a Sunday. Separate the months by the rule that months A and B fall into the same group if and only if the first day of month A falls on the same day of the week as the first day of month B.
For a non-leap year, there are 7 groupings: \{Jan, Oct\}, \{Feb, Mar, Nov\}, \{Apr, Jul\}, \{May\}, \{Jun\}, \{Aug\}, and \{Sep, Dec\}.
For a leap year, there are 7 different groupings: \{ Jan,Apr,Jul\}, \{Feb, Aug\}, \{Mar, Nov \},\{May \},\{Jun \},\{Sep, Dec \},and \{Oct \}.
For both leap and non-leap years, the groups contain at least 1 month and at most 3 months. Therefore $(m, M)=(1,3)$

