Math League Contest \#5, March 10, 1998

ACHS Math Competition Team

October 27, 2009

Problem 5-1

What are both values of x that satisfy

$$
1 x+9 x+9 x+7 x=1 x^{2}+9 x^{2}+9 x^{2}+8 x^{2} ?
$$

Problem 5-1

What are both values of x that satisfy

$$
1 x+9 x+9 x+7 x=1 x^{2}+9 x^{2}+9 x^{2}+8 x^{2} ?
$$

The given equation is equivalent to $26 x=27 x^{2}$

Problem 5-1

What are both values of x that satisfy

$$
1 x+9 x+9 x+7 x=1 x^{2}+9 x^{2}+9 x^{2}+8 x^{2} ?
$$

The given equation is equivalent to $26 x=27 x^{2}$ or $x(27 x-26)=0$

Problem 5-1

What are both values of x that satisfy

$$
1 x+9 x+9 x+7 x=1 x^{2}+9 x^{2}+9 x^{2}+8 x^{2} ?
$$

The given equation is equivalent to $26 x=27 x^{2}$ or $x(27 x-26)=0$ which has solutions 0 and $\frac{26}{27}$.

Problem 5-2

What is the largest prime factor of $143000000 ?$

Problem 5-2

What is the largest prime factor of $143000000 ?$
$143000000=143 \times 10^{6}$

Problem 5-2

What is the largest prime factor of $143000000 ?$
$143000000=143 \times 10^{6}=143 \times 5^{6} \times 2^{6}$

Problem 5-2

What is the largest prime factor of $143000000 ?$
$143000000=143 \times 10^{6}=143 \times 5^{6} \times 2^{6}=13 \times 11 \times 5^{6} \times 2^{6}$

Problem 5-2

What is the largest prime factor of $143000000 ?$
$143000000=143 \times 10^{6}=143 \times 5^{6} \times 2^{6}=13 \times 11 \times 5^{6} \times 2^{6}$
so the largest prime factor is 13.

Problem 5-3

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Problem 5-3

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Problem 5-3

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Method I
$P(A)=P(B)=\frac{1}{8}$, so $P\left(A^{\prime}\right)=P\left(B^{\prime}\right)=1-\frac{1}{8}=\frac{7}{8}$.

Problem 5-3

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Method I $P(A)=P(B)=\frac{1}{8}$, so $P\left(A^{\prime}\right)=P\left(B^{\prime}\right)=1-\frac{1}{8}=\frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: A and B^{\prime},

Problem 5-3

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Method I
$P(A)=P(B)=\frac{1}{8}$, so $P\left(A^{\prime}\right)=P\left(B^{\prime}\right)=1-\frac{1}{8}=\frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: A and B^{\prime}, A^{\prime} and B,

Problem 5-3

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Method I
$P(A)=P(B)=\frac{1}{8}$, so $P\left(A^{\prime}\right)=P\left(B^{\prime}\right)=1-\frac{1}{8}=\frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: A and B^{\prime}, A^{\prime} and B, A and B. So the probability of at least one prospector striking it rich is

$$
P=\frac{1}{8} \times \frac{7}{8}
$$

Problem 5-3

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Method I
$P(A)=P(B)=\frac{1}{8}$, so $P\left(A^{\prime}\right)=P\left(B^{\prime}\right)=1-\frac{1}{8}=\frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: A and B^{\prime}, A^{\prime} and B, A and B. So the probability of at least one prospector striking it rich is

$$
P=\frac{1}{8} \times \frac{7}{8}+\frac{7}{8} \times \frac{1}{8}
$$

Problem 5-3

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Method I
$P(A)=P(B)=\frac{1}{8}$, so $P\left(A^{\prime}\right)=P\left(B^{\prime}\right)=1-\frac{1}{8}=\frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: A and B^{\prime}, A^{\prime} and B, A and B. So the probability of at least one prospector striking it rich is

$$
P=\frac{1}{8} \times \frac{7}{8}+\frac{7}{8} \times \frac{1}{8}+\frac{1}{8} \times \frac{1}{8}
$$

Problem 5-3

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Method I
$P(A)=P(B)=\frac{1}{8}$, so $P\left(A^{\prime}\right)=P\left(B^{\prime}\right)=1-\frac{1}{8}=\frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: A and B^{\prime}, A^{\prime} and B, A and B. So the probability of at least one prospector striking it rich is

$$
P=\frac{1}{8} \times \frac{7}{8}+\frac{7}{8} \times \frac{1}{8}+\frac{1}{8} \times \frac{1}{8}=\frac{14}{64}+\frac{1}{64}
$$

Problem 5-3

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Method I
$P(A)=P(B)=\frac{1}{8}$, so $P\left(A^{\prime}\right)=P\left(B^{\prime}\right)=1-\frac{1}{8}=\frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: A and B^{\prime}, A^{\prime} and B, A and B. So the probability of at least one prospector striking it rich is

$$
P=\frac{1}{8} \times \frac{7}{8}+\frac{7}{8} \times \frac{1}{8}+\frac{1}{8} \times \frac{1}{8}=\frac{14}{64}+\frac{1}{64}=\frac{15}{64} .
$$

Problem 5-3 (Cont.)

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Problem 5-3 (Cont.)

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Method II
$P(A \cup B)$

Problem 5-3 (Cont.)

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.

Method II
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Problem 5-3 (Cont.)

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.
Method II
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \times \frac{1}{8}$

Problem 5-3 (Cont.)

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.
Method II

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \times \frac{1}{8}=\frac{16}{64}-\frac{1}{64}
$$

Problem 5-3 (Cont.)

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probabilty of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors Al and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A^{\prime} mean that he does not. Similarly, let B mean that Barb strikes it rich, and B^{\prime} mean that she does not.
Method II
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=\frac{1}{8}+\frac{1}{8}-\frac{1}{8} \times \frac{1}{8}=\frac{16}{64}-\frac{1}{64}=\frac{15}{64}$.

Problem 5-4

What is the average of the numbers $\log _{12} 3, \log _{12} 6$, and $\log _{12} 8 ?$

Problem 5-4

What is the average of the numbers $\log _{12} 3, \log _{12} 6$, and $\log _{12} 8 ?$
$\log _{12} 3+\log _{12} 6+\log _{12} 8$

Problem 5-4

What is the average of the numbers $\log _{12} 3, \log _{12} 6$, and $\log _{12} 8$?
$\log _{12} 3+\log _{12} 6+\log _{12} 8=\log _{12}(3 \times 6 \times 8)$

Problem 5-4

What is the average of the numbers $\log _{12} 3, \log _{12} 6$, and $\log _{12} 8 ?$
$\log _{12} 3+\log _{12} 6+\log _{12} 8=\log _{12}(3 \times 6 \times 8)=\log _{12} 144$

Problem 5-4

What is the average of the numbers $\log _{12} 3, \log _{12} 6$, and $\log _{12} 8 ?$
$\log _{12} 3+\log _{12} 6+\log _{12} 8=\log _{12}(3 \times 6 \times 8)=\log _{12} 144=\log _{12} 12^{2}$

Problem 5-4

What is the average of the numbers $\log _{12} 3, \log _{12} 6$, and $\log _{12} 8 ?$
$\log _{12} 3+\log _{12} 6+\log _{12} 8=\log _{12}(3 \times 6 \times 8)=\log _{12} 144=\log _{12} 12^{2}=2$

Problem 5-4

What is the average of the numbers $\log _{12} 3, \log _{12} 6$, and $\log _{12} 8$?
$\log _{12} 3+\log _{12} 6+\log _{12} 8=\log _{12}(3 \times 6 \times 8)=\log _{12} 144=\log _{12} 12^{2}=2$
so that the average of the three numbers is $2 / 3$.

Problem 2-4

In the diagram, $\overline{A E} \perp \overline{A B}, \overline{C D} \| \overline{A E}$, and $\overline{B C} \| \overline{D E}$. If $C D=4, A B=3$, and $A E=5$, and if the distance from $\overline{A E}$ to $\overline{C D}$ is 2 , what is the area of pentagon $A B C D E$?

Problem 2-4

In the diagram, $\overline{A E} \perp \overline{A B}, \overline{C D} \| \overline{A E}$, and $\overline{B C} \| \overline{D E}$. If $C D=4, A B=3$, and $A E=5$, and if the distance from $\overline{A E}$ to $\overline{C D}$ is 2 , what is the area of pentagon $A B C D E$?

Extend $\overline{B C}$ until it intersects $\overline{A E}$,

Problem 2-4

In the diagram, $\overline{A E} \perp \overline{A B}, \overline{C D} \| \overline{A E}$, and $\overline{B C} \| \overline{D E}$. If $C D=4, A B=3$, and $A E=5$, and if the distance from $\overline{A E}$ to $\overline{C D}$ is 2 , what is the area of pentagon $A B C D E$?

Extend $\overline{B C}$ until it intersects $\overline{A E}$, yielding a parallelogram and a right triangle.

Problem 2-4

In the diagram, $\overline{A E} \perp \overline{A B}, \overline{C D} \| \overline{A E}$, and $\overline{B C} \| \overline{D E}$. If $C D=4, A B=3$, and $A E=5$, and if the distance from $\overline{A E}$ to $\overline{C D}$ is 2 , what is the area of pentagon $A B C D E$?

Extend $\overline{B C}$ until it intersects $\overline{A E}$, yielding a parallelogram and a right triangle.

Problem 2-4

In the diagram, $\overline{A E} \perp \overline{A B}, \overline{C D} \| \overline{A E}$, and $\overline{B C} \| \overline{D E}$. If $C D=4, A B=3$, and $A E=5$, and if the distance from $\overline{A E}$ to $\overline{C D}$ is 2 , what is the area of pentagon $A B C D E$?

Extend $\overline{B C}$ until it intersects $\overline{A E}$, yielding a parallelogram and a right triangle.

Problem 2-4

In the diagram, $\overline{A E} \perp \overline{A B}, \overline{C D} \| \overline{A E}$, and $\overline{B C} \| \overline{D E}$. If $C D=4, A B=3$, and $A E=5$, and if the distance from $\overline{A E}$ to $\overline{C D}$ is 2 , what is the area of pentagon $A B C D E$?

Extend $\overline{B C}$ until it intersects $\overline{A E}$, yielding a parallelogram and a right triangle.
The area of the pentagon is then

$$
\frac{1}{2} \times 1 \times 3+2 \times 4
$$

Problem 2-4

In the diagram, $\overline{A E} \perp \overline{A B}, \overline{C D} \| \overline{A E}$, and $\overline{B C} \| \overline{D E}$. If $C D=4, A B=3$, and $A E=5$, and if the distance from $\overline{A E}$ to $\overline{C D}$ is 2 , what is the area of pentagon $A B C D E$?

Extend $\overline{B C}$ until it intersects $\overline{A E}$, yielding a parallelogram and a right triangle.
The area of the pentagon is then

$$
\frac{1}{2} \times 1 \times 3+2 \times 4=1.5+8=9.5
$$

Problem 5-6

In terms of x, what is the polynomial P of least degree, with integral coefficients, for which $P(\sqrt{3}+\sqrt{2})=\sqrt{3}-\sqrt{2}$?

Problem 5-6

In terms of x, what is the polynomial P of least degree, with integral coefficients, for which $P(\sqrt{3}+\sqrt{2})=\sqrt{3}-\sqrt{2}$?

The polynomial must be of the form

$$
P(x)=n_{0}+n_{1} x+n_{2} x^{2}+\cdots+n_{N} x^{N}
$$

where N is the order of the polynomial, and $n_{0}, n_{1}, \ldots, n_{N}$ are integers.

Problem 5-6

In terms of x, what is the polynomial P of least degree, with integral coefficients, for which $P(\sqrt{3}+\sqrt{2})=\sqrt{3}-\sqrt{2}$?

The polynomial must be of the form

$$
P(x)=n_{0}+n_{1} x+n_{2} x^{2}+\cdots+n_{N} x^{N}
$$

where N is the order of the polynomial, and $n_{0}, n_{1}, \ldots, n_{N}$ are integers.
Note that $P(x)$ is not linear, since $n_{0}+n_{1}(\sqrt{3}+\sqrt{2}) \neq \sqrt{3}-\sqrt{2}$ for any integral n_{0} and n_{1}.

Problem 5-6

In terms of x, what is the polynomial P of least degree, with integral coefficients, for which $P(\sqrt{3}+\sqrt{2})=\sqrt{3}-\sqrt{2}$?

The polynomial must be of the form

$$
P(x)=n_{0}+n_{1} x+n_{2} x^{2}+\cdots+n_{N} x^{N}
$$

where N is the order of the polynomial, and $n_{0}, n_{1}, \ldots, n_{N}$ are integers.
Note that $P(x)$ is not linear, since $n_{0}+n_{1}(\sqrt{3}+\sqrt{2}) \neq \sqrt{3}-\sqrt{2}$ for any integral n_{0} and n_{1}. Also, since $(\sqrt{3}+\sqrt{2})^{2}=5+2 \sqrt{6}, P$ is not quadratic, because we would have a term involving $\sqrt{6}$.

Problem 5-6

In terms of x, what is the polynomial P of least degree, with integral coefficients, for which $P(\sqrt{3}+\sqrt{2})=\sqrt{3}-\sqrt{2}$?

The polynomial must be of the form

$$
P(x)=n_{0}+n_{1} x+n_{2} x^{2}+\cdots+n_{N} x^{N}
$$

where N is the order of the polynomial, and $n_{0}, n_{1}, \ldots, n_{N}$ are integers.
Note that $P(x)$ is not linear, since $n_{0}+n_{1}(\sqrt{3}+\sqrt{2}) \neq \sqrt{3}-\sqrt{2}$ for any integral n_{0} and n_{1}. Also, since $(\sqrt{3}+\sqrt{2})^{2}=5+2 \sqrt{6}, P$ is not quadratic, because we would have a term involving $\sqrt{6}$. Let's try a cubic polynomial:

$$
\begin{aligned}
\sqrt{3}-\sqrt{2} & =n_{0}+n_{1}(\sqrt{3}+\sqrt{2})+n_{2}(\sqrt{3}+\sqrt{2})^{2}+n_{3}(\sqrt{3}+\sqrt{2})^{3} \\
& =n_{0}+n_{1}(\sqrt{3}+\sqrt{2})+n_{2}(5+2 \sqrt{6})+n_{3}(9 \sqrt{3}+11 \sqrt{2}) \\
& =n_{0}+5 n_{2}+\sqrt{2}\left(n_{1}+11 n_{3}\right)+\sqrt{3}\left(n_{1}+9 n_{3}\right)+2 n_{2} \sqrt{6}
\end{aligned}
$$

Problem 5-6

In terms of x, what is the polynomial P of least degree, with integral coefficients, for which $P(\sqrt{3}+\sqrt{2})=\sqrt{3}-\sqrt{2}$?

The polynomial must be of the form

$$
P(x)=n_{0}+n_{1} x+n_{2} x^{2}+\cdots+n_{N} x^{N}
$$

where N is the order of the polynomial, and $n_{0}, n_{1}, \ldots, n_{N}$ are integers.
Note that $P(x)$ is not linear, since $n_{0}+n_{1}(\sqrt{3}+\sqrt{2}) \neq \sqrt{3}-\sqrt{2}$ for any integral n_{0} and n_{1}. Also, since $(\sqrt{3}+\sqrt{2})^{2}=5+2 \sqrt{6}, P$ is not quadratic, because we would have a term involving $\sqrt{6}$. Let's try a cubic polynomial:

$$
\begin{aligned}
\sqrt{3}-\sqrt{2} & =n_{0}+n_{1}(\sqrt{3}+\sqrt{2})+n_{2}(\sqrt{3}+\sqrt{2})^{2}+n_{3}(\sqrt{3}+\sqrt{2})^{3} \\
& =n_{0}+n_{1}(\sqrt{3}+\sqrt{2})+n_{2}(5+2 \sqrt{6})+n_{3}(9 \sqrt{3}+11 \sqrt{2}) \\
& =n_{0}+5 n_{2}+\sqrt{2}\left(n_{1}+11 n_{3}\right)+\sqrt{3}\left(n_{1}+9 n_{3}\right)+2 n_{2} \sqrt{6}
\end{aligned}
$$

We conclude $n_{2}=0$

Problem 5-6

In terms of x, what is the polynomial P of least degree, with integral coefficients, for which $P(\sqrt{3}+\sqrt{2})=\sqrt{3}-\sqrt{2}$?

The polynomial must be of the form

$$
P(x)=n_{0}+n_{1} x+n_{2} x^{2}+\cdots+n_{N} x^{N}
$$

where N is the order of the polynomial, and $n_{0}, n_{1}, \ldots, n_{N}$ are integers.
Note that $P(x)$ is not linear, since $n_{0}+n_{1}(\sqrt{3}+\sqrt{2}) \neq \sqrt{3}-\sqrt{2}$ for any integral n_{0} and n_{1}. Also, since $(\sqrt{3}+\sqrt{2})^{2}=5+2 \sqrt{6}, P$ is not quadratic, because we would have a term involving $\sqrt{6}$. Let's try a cubic polynomial:

$$
\begin{aligned}
\sqrt{3}-\sqrt{2} & =n_{0}+n_{1}(\sqrt{3}+\sqrt{2})+n_{2}(\sqrt{3}+\sqrt{2})^{2}+n_{3}(\sqrt{3}+\sqrt{2})^{3} \\
& =n_{0}+n_{1}(\sqrt{3}+\sqrt{2})+n_{2}(5+2 \sqrt{6})+n_{3}(9 \sqrt{3}+11 \sqrt{2}) \\
& =n_{0}+5 n_{2}+\sqrt{2}\left(n_{1}+11 n_{3}\right)+\sqrt{3}\left(n_{1}+9 n_{3}\right)+2 n_{2} \sqrt{6}
\end{aligned}
$$

We conclude $n_{2}=0$ and therefore $n_{0}=0$.

Problem 5-6 (cont.)

$$
\sqrt{3}-\sqrt{2}=\sqrt{2}\left(n_{1}+11 n_{3}\right)+\sqrt{3}\left(n_{1}+9 n_{3}\right)
$$

Problem 5-6 (cont.)

$$
\sqrt{3}-\sqrt{2}=\sqrt{2}\left(n_{1}+11 n_{3}\right)+\sqrt{3}\left(n_{1}+9 n_{3}\right)
$$

The integral multipliers of the radicals on each side of the equation must be the same:

$$
-1=n_{1}+11 n_{3}
$$

Problem 5-6 (cont.)

$$
\sqrt{3}-\sqrt{2}=\sqrt{2}\left(n_{1}+11 n_{3}\right)+\sqrt{3}\left(n_{1}+9 n_{3}\right)
$$

The integral multipliers of the radicals on each side of the equation must be the same:

$$
-1=n_{1}+11 n_{3}, \quad 1=n_{1}+9 n_{3}
$$

Problem 5-6 (cont.)

$$
\sqrt{3}-\sqrt{2}=\sqrt{2}\left(n_{1}+11 n_{3}\right)+\sqrt{3}\left(n_{1}+9 n_{3}\right)
$$

The integral multipliers of the radicals on each side of the equation must be the same:

$$
-1=n_{1}+11 n_{3}, \quad 1=n_{1}+9 n_{3}
$$

By subtracting these two equations, we find $2 n_{3}=-2$ or $n_{3}=-1$.

Problem 5-6 (cont.)

$$
\sqrt{3}-\sqrt{2}=\sqrt{2}\left(n_{1}+11 n_{3}\right)+\sqrt{3}\left(n_{1}+9 n_{3}\right)
$$

The integral multipliers of the radicals on each side of the equation must be the same:

$$
-1=n_{1}+11 n_{3}, \quad 1=n_{1}+9 n_{3}
$$

By subtracting these two equations, we find $2 n_{3}=-2$ or $n_{3}=-1$. Then $n_{1}=10$.

Problem 5-6 (cont.)

$$
\sqrt{3}-\sqrt{2}=\sqrt{2}\left(n_{1}+11 n_{3}\right)+\sqrt{3}\left(n_{1}+9 n_{3}\right)
$$

The integral multipliers of the radicals on each side of the equation must be the same:

$$
-1=n_{1}+11 n_{3}, \quad 1=n_{1}+9 n_{3}
$$

By subtracting these two equations, we find $2 n_{3}=-2$ or $n_{3}=-1$. Then $n_{1}=10$.
The polynomial is therefore $P(x)=10 x-x^{3}$.

