Math League Contest #5, March 10, 1998

ACHS Math Competition Team

October 27, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What are both values of *x* that satisfy

 $1x + 9x + 9x + 7x = 1x^2 + 9x^2 + 9x^2 + 8x^2?$

What are both values of *x* that satisfy

$$1x + 9x + 9x + 7x = 1x^2 + 9x^2 + 9x^2 + 8x^2?$$

The given equation is equivalent to $26x = 27x^2$

What are both values of *x* that satisfy

$$1x + 9x + 9x + 7x = 1x^2 + 9x^2 + 9x^2 + 8x^2?$$

The given equation is equivalent to $26x = 27x^2$ or x(27x - 26) = 0

What are both values of *x* that satisfy

$$1x + 9x + 9x + 7x = 1x^2 + 9x^2 + 9x^2 + 8x^2$$
?

The given equation is equivalent to $26x = 27x^2$ or x(27x - 26) = 0 which has solutions 0 and $\frac{26}{27}$.

What is the largest prime factor of 143 000 000?

What is the largest prime factor of 143 000 000?

 $143\,000\,000 = 143 \times 10^{6}$

What is the largest prime factor of 143 000 000?

 $143\,000\,000 = 143 \times 10^6 = 143 \times 5^6 \times 2^6$

What is the largest prime factor of 143 000 000?

 $143\,000\,000 = 143\times10^6 = 143\times5^6\times2^6 = 13\times11\times5^6\times2^6$

What is the largest prime factor of 143 000 000?

 $143\,000\,000 = 143 \times 10^6 = 143 \times 5^6 \times 2^6 = 13 \times 11 \times 5^6 \times 2^6$

so the largest prime factor is 13.

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Method I

$$P(A) = P(B) = \frac{1}{8}$$
, so $P(A') = P(B') = 1 - \frac{1}{8} = \frac{7}{8}$.

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

Method I

 $P(A) = P(B) = \frac{1}{8}$, so $P(A') = P(B') = 1 - \frac{1}{8} = \frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: *A* and *B'*,

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

Method I

 $P(A) = P(B) = \frac{1}{8}$, so $P(A') = P(B') = 1 - \frac{1}{8} = \frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: *A* and *B'*, *A'* and *B*,

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

Method I

 $P(A) = P(B) = \frac{1}{8}$, so $P(A') = P(B') = 1 - \frac{1}{8} = \frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: *A* and *B'*, *A'* and *B*, *A* and *B*. So the probability of at least one prospector striking it rich is

$$P = \frac{1}{8} \times \frac{7}{8}$$

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

Method I

 $P(A) = P(B) = \frac{1}{8}$, so $P(A') = P(B') = 1 - \frac{1}{8} = \frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: *A* and *B'*, *A'* and *B*, *A* and *B*. So the probability of at least one prospector striking it rich is

$$P = \frac{1}{8} \times \frac{7}{8} + \frac{7}{8} \times \frac{1}{8}$$

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

Method I

 $P(A) = P(B) = \frac{1}{8}$, so $P(A') = P(B') = 1 - \frac{1}{8} = \frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: *A* and *B'*, *A'* and *B*, *A* and *B*. So the probability of at least one prospector striking it rich is

$$P = \frac{1}{8} \times \frac{7}{8} + \frac{7}{8} \times \frac{1}{8} + \frac{1}{8} \times \frac{1}{8}$$

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let *A* mean that AI strikes it rich, and A' mean that he does not. Similarly, let *B* mean that Barb strikes it rich, and B' mean that she does not.

Method I

 $P(A) = P(B) = \frac{1}{8}$, so $P(A') = P(B') = 1 - \frac{1}{8} = \frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: *A* and *B'*, *A'* and *B*, *A* and *B*. So the probability of at least one prospector striking it rich is

$$P = \frac{1}{8} \times \frac{7}{8} + \frac{7}{8} \times \frac{1}{8} + \frac{1}{8} \times \frac{1}{8} = \frac{14}{64} + \frac{1}{64}$$

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

Method I

 $P(A) = P(B) = \frac{1}{8}$, so $P(A') = P(B') = 1 - \frac{1}{8} = \frac{7}{8}$. At least one prospector can strike it rich in any of the following ways: *A* and *B'*, *A'* and *B*, *A* and *B*. So the probability of at least one prospector striking it rich is

$$P = \frac{1}{8} \times \frac{7}{8} + \frac{7}{8} \times \frac{1}{8} + \frac{1}{8} \times \frac{1}{8} = \frac{14}{64} + \frac{1}{64} = \frac{15}{64}.$$

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

Method II

 $P(A \cup B)$

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

Method II

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

Method II

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{8} + \frac{1}{8} - \frac{1}{8} \times \frac{1}{8}$$

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let A mean that Al strikes it rich, and A' mean that he does not. Similarly, let B mean that Barb strikes it rich, and B' mean that she does not.

Method II

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{8} + \frac{1}{8} - \frac{1}{8} \times \frac{1}{8} = \frac{16}{64} - \frac{1}{64}$$

By finding a gold nugget, a prospector is said to "strike it rich." If, on any given day, a prospector has a probability of $\frac{1}{8}$ of striking it rich, what is the probability that at least one of the prospectors AI and Barb strike it rich on a day that they both mine for gold?

Let *A* mean that AI strikes it rich, and A' mean that he does not. Similarly, let *B* mean that Barb strikes it rich, and B' mean that she does not.

Method II

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{8} + \frac{1}{8} - \frac{1}{8} \times \frac{1}{8} = \frac{16}{64} - \frac{1}{64} = \frac{15}{64}$$

What is the average of the numbers $log_{12} 3$, $log_{12} 6$, and $log_{12} 8$?

What is the average of the numbers $log_{12} 3$, $log_{12} 6$, and $log_{12} 8$?

 $\log_{12}3 + \log_{12}6 + \log_{12}8$

What is the average of the numbers $log_{12} 3$, $log_{12} 6$, and $log_{12} 8$?

 $\log_{12} 3 + \log_{12} 6 + \log_{12} 8 = \log_{12} (3 \times 6 \times 8)$

What is the average of the numbers $log_{12} 3$, $log_{12} 6$, and $log_{12} 8$?

 $\log_{12} 3 + \log_{12} 6 + \log_{12} 8 = \log_{12} (3 \times 6 \times 8) = \log_{12} 144$

What is the average of the numbers $\log_{12} 3$, $\log_{12} 6$, and $\log_{12} 8$?

 $\log_{12} 3 + \log_{12} 6 + \log_{12} 8 = \log_{12} (3 \times 6 \times 8) = \log_{12} 144 = \log_{12} 12^2$

What is the average of the numbers $\log_{12} 3$, $\log_{12} 6$, and $\log_{12} 8$?

 $\log_{12} 3 + \log_{12} 6 + \log_{12} 8 = \log_{12} (3 \times 6 \times 8) = \log_{12} 144 = \log_{12} 12^2 = 2$

What is the average of the numbers $\log_{12} 3$, $\log_{12} 6$, and $\log_{12} 8$?

 $\log_{12} 3 + \log_{12} 6 + \log_{12} 8 = \log_{12} (3 \times 6 \times 8) = \log_{12} 144 = \log_{12} 12^2 = 2$

so that the average of the three numbers is 2/3.

In the diagram, $\overline{AE} \perp \overline{AB}$, $\overline{CD} \parallel \overline{AE}$, and $\overline{BC} \parallel \overline{DE}$. If CD = 4, AB = 3, and AE = 5, and if the distance from \overline{AE} to \overline{CD} is 2, what is the area of pentagon ABCDE?

In the diagram, $\overline{AE} \perp \overline{AB}$, $\overline{CD} \parallel \overline{AE}$, and $\overline{BC} \parallel \overline{DE}$. If CD = 4, AB = 3, and AE = 5, and if the distance from \overline{AE} to \overline{CD} is 2, what is the area of pentagon ABCDE?

Extend \overline{BC} until it intersects \overline{AE} ,

In the diagram, $\overline{AE} \perp \overline{AB}$, $\overline{CD} \parallel \overline{AE}$, and $\overline{BC} \parallel \overline{DE}$. If CD = 4, AB = 3, and AE = 5, and if the distance from \overline{AE} to \overline{CD} is 2, what is the area of pentagon ABCDE?

Extend \overline{BC} until it intersects \overline{AE} , yielding a parallelogram and a right triangle.

In the diagram, $\overline{AE} \perp \overline{AB}$, $\overline{CD} \parallel \overline{AE}$, and $\overline{BC} \parallel \overline{DE}$. If CD = 4, AB = 3, and AE = 5, and if the distance from \overline{AE} to \overline{CD} is 2, what is the area of pentagon ABCDE?

Extend \overline{BC} until it intersects \overline{AE} , yielding a parallelogram and a right triangle.

In the diagram, $\overline{AE} \perp \overline{AB}$, $\overline{CD} \parallel \overline{AE}$, and $\overline{BC} \parallel \overline{DE}$. If CD = 4, AB = 3, and AE = 5, and if the distance from \overline{AE} to \overline{CD} is 2, what is the area of pentagon ABCDE?

Extend \overline{BC} until it intersects \overline{AE} , yielding a parallelogram and a right triangle.

In the diagram, $\overline{AE} \perp \overline{AB}$, $\overline{CD} \parallel \overline{AE}$, and $\overline{BC} \parallel \overline{DE}$. If CD = 4, AB = 3, and AE = 5, and if the distance from \overline{AE} to \overline{CD} is 2, what is the area of pentagon ABCDE?

・ロット (雪) () () () ()

Extend \overline{BC} until it intersects \overline{AE} , yielding a parallelogram and a right triangle.

The area of the pentagon is then

$$\frac{1}{2} \times 1 \times 3 + 2 \times 4$$

In the diagram, $\overline{AE} \perp \overline{AB}$, $\overline{CD} \parallel \overline{AE}$, and $\overline{BC} \parallel \overline{DE}$. If CD = 4, AB = 3, and AE = 5, and if the distance from \overline{AE} to \overline{CD} is 2, what is the area of pentagon ABCDE?

・ ロ ト ・ 雪 ト ・ 目 ト

Extend \overline{BC} until it intersects \overline{AE} , yielding a parallelogram and a right triangle.

The area of the pentagon is then

$$\frac{1}{2} \times 1 \times 3 + 2 \times 4 = 1.5 + 8 = 9.5$$

In terms of *x*, what is the polynomial *P* of least degree, with integral coefficients, for which $P(\sqrt{3} + \sqrt{2}) = \sqrt{3} - \sqrt{2}$?

In terms of *x*, what is the polynomial *P* of least degree, with integral coefficients, for which $P(\sqrt{3} + \sqrt{2}) = \sqrt{3} - \sqrt{2}$?

The polynomial must be of the form

$$P(x) = n_0 + n_1 x + n_2 x^2 + \dots + n_N x^N$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

where *N* is the order of the polynomial, and n_0, n_1, \ldots, n_N are integers.

In terms of *x*, what is the polynomial *P* of least degree, with integral coefficients, for which $P(\sqrt{3} + \sqrt{2}) = \sqrt{3} - \sqrt{2}$?

The polynomial must be of the form

$$P(x) = n_0 + n_1 x + n_2 x^2 + \dots + n_N x^N$$

where *N* is the order of the polynomial, and n_0, n_1, \ldots, n_N are integers.

Note that P(x) is not linear, since $n_0 + n_1(\sqrt{3} + \sqrt{2}) \neq \sqrt{3} - \sqrt{2}$ for any integral n_0 and n_1 .

In terms of *x*, what is the polynomial *P* of least degree, with integral coefficients, for which $P(\sqrt{3} + \sqrt{2}) = \sqrt{3} - \sqrt{2}$?

The polynomial must be of the form

$$P(x) = n_0 + n_1 x + n_2 x^2 + \dots + n_N x^N$$

where *N* is the order of the polynomial, and n_0, n_1, \ldots, n_N are integers.

Note that P(x) is not linear, since $n_0 + n_1(\sqrt{3} + \sqrt{2}) \neq \sqrt{3} - \sqrt{2}$ for any integral n_0 and n_1 . Also, since $(\sqrt{3} + \sqrt{2})^2 = 5 + 2\sqrt{6}$, *P* is not quadratic, because we would have a term involving $\sqrt{6}$.

In terms of *x*, what is the polynomial *P* of least degree, with integral coefficients, for which $P(\sqrt{3} + \sqrt{2}) = \sqrt{3} - \sqrt{2}$?

The polynomial must be of the form

$$P(x) = n_0 + n_1 x + n_2 x^2 + \dots + n_N x^N$$

where *N* is the order of the polynomial, and n_0, n_1, \ldots, n_N are integers.

Note that P(x) is not linear, since $n_0 + n_1(\sqrt{3} + \sqrt{2}) \neq \sqrt{3} - \sqrt{2}$ for any integral n_0 and n_1 . Also, since $(\sqrt{3} + \sqrt{2})^2 = 5 + 2\sqrt{6}$, *P* is not quadratic, because we would have a term involving $\sqrt{6}$. Let's try a cubic polynomial:

$$\begin{split} \sqrt{3} - \sqrt{2} &= n_0 + n_1 \left(\sqrt{3} + \sqrt{2}\right) + n_2 \left(\sqrt{3} + \sqrt{2}\right)^2 + n_3 \left(\sqrt{3} + \sqrt{2}\right)^3 \\ &= n_0 + n_1 \left(\sqrt{3} + \sqrt{2}\right) + n_2 \left(5 + 2\sqrt{6}\right) + n_3 \left(9\sqrt{3} + 11\sqrt{2}\right) \\ &= n_0 + 5n_2 + \sqrt{2} (n_1 + 11n_3) + \sqrt{3} (n_1 + 9n_3) + 2n_2 \sqrt{6} \end{split}$$

In terms of x, what is the polynomial P of least degree, with integral coefficients, for which $P(\sqrt{3} + \sqrt{2}) = \sqrt{3} - \sqrt{2}?$

The polynomial must be of the form

$$P(x) = n_0 + n_1 x + n_2 x^2 + \dots + n_N x^N$$

where N is the order of the polynomial, and n_0, n_1, \ldots, n_N are integers.

Note that P(x) is not linear, since $n_0 + n_1(\sqrt{3} + \sqrt{2}) \neq \sqrt{3} - \sqrt{2}$ for any integral n_0 and n_1 . Also, since $(\sqrt{3} + \sqrt{2})^2 = 5 + 2\sqrt{6}$, P is not quadratic, because we would have a term involving $\sqrt{6}$. Let's try a cubic polynomial:

$$\sqrt{3} - \sqrt{2} = n_0 + n_1 (\sqrt{3} + \sqrt{2}) + n_2 (\sqrt{3} + \sqrt{2})^2 + n_3 (\sqrt{3} + \sqrt{2})^3$$

= $n_0 + n_1 (\sqrt{3} + \sqrt{2}) + n_2 (5 + 2\sqrt{6}) + n_3 (9\sqrt{3} + 11\sqrt{2})$
= $n_0 + 5n_2 + \sqrt{2}(n_1 + 11n_3) + \sqrt{3}(n_1 + 9n_3) + 2n_2\sqrt{6}$
We conclude $n_2 = 0$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

In terms of x, what is the polynomial P of least degree, with integral coefficients, for which $P(\sqrt{3} + \sqrt{2}) = \sqrt{3} - \sqrt{2}?$

The polynomial must be of the form

$$P(x) = n_0 + n_1 x + n_2 x^2 + \dots + n_N x^N$$

where N is the order of the polynomial, and n_0, n_1, \ldots, n_N are integers.

Note that P(x) is not linear, since $n_0 + n_1(\sqrt{3} + \sqrt{2}) \neq \sqrt{3} - \sqrt{2}$ for any integral n_0 and n_1 . Also, since $(\sqrt{3} + \sqrt{2})^2 = 5 + 2\sqrt{6}$, P is not quadratic, because we would have a term involving $\sqrt{6}$. Let's trv a cubic polynomial:

$$\sqrt{3} - \sqrt{2} = n_0 + n_1(\sqrt{3} + \sqrt{2}) + n_2(\sqrt{3} + \sqrt{2})^2 + n_3(\sqrt{3} + \sqrt{2})^3$$

= $n_0 + n_1(\sqrt{3} + \sqrt{2}) + n_2(5 + 2\sqrt{6}) + n_3(9\sqrt{3} + 11\sqrt{2})$
= $n_0 + 5n_2 + \sqrt{2}(n_1 + 11n_3) + \sqrt{3}(n_1 + 9n_3) + 2n_2\sqrt{6}$
We conclude $n_2 = 0$ and therefore $n_0 = 0$.

$$\sqrt{3} - \sqrt{2} = \sqrt{2}(n_1 + 11n_3) + \sqrt{3}(n_1 + 9n_3)$$

$$\sqrt{3} - \sqrt{2} = \sqrt{2}(n_1 + 11n_3) + \sqrt{3}(n_1 + 9n_3)$$

The integral multipliers of the radicals on each side of the equation must be the same:

$$-1 = n_1 + 11n_3$$

$$\sqrt{3} - \sqrt{2} = \sqrt{2}(n_1 + 11n_3) + \sqrt{3}(n_1 + 9n_3)$$

The integral multipliers of the radicals on each side of the equation must be the same:

$$-1 = n_1 + 11n_3$$
, $1 = n_1 + 9n_3$

$$\sqrt{3} - \sqrt{2} = \sqrt{2}(n_1 + 11n_3) + \sqrt{3}(n_1 + 9n_3)$$

The integral multipliers of the radicals on each side of the equation must be the same:

$$-1 = n_1 + 11n_3$$
, $1 = n_1 + 9n_3$

By subtracting these two equations, we find $2n_3 = -2$ or $n_3 = -1$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$$\sqrt{3} - \sqrt{2} = \sqrt{2}(n_1 + 11n_3) + \sqrt{3}(n_1 + 9n_3)$$

The integral multipliers of the radicals on each side of the equation must be the same:

$$-1 = n_1 + 11n_3$$
, $1 = n_1 + 9n_3$

By subtracting these two equations, we find $2n_3 = -2$ or $n_3 = -1$. Then $n_1 = 10$.

$$\sqrt{3} - \sqrt{2} = \sqrt{2}(n_1 + 11n_3) + \sqrt{3}(n_1 + 9n_3)$$

The integral multipliers of the radicals on each side of the equation must be the same:

$$-1 = n_1 + 11n_3$$
, $1 = n_1 + 9n_3$

By subtracting these two equations, we find $2n_3 = -2$ or $n_3 = -1$. Then $n_1 = 10$. The polynomial is therefore $P(x) = 10x - x^3$.