SEQUENCE AND SERIES WORKSHEET SOLUTIONS

 The sum of 27 consecutive integers is 2646. What is the largest of those integers?

- The sum of 27 consecutive integers is 2646. What is the largest of those integers?
- In any arithmetic sequence, the average is the median.

- The sum of 27 consecutive integers is 2646. What is the largest of those integers?
- In any arithmetic sequence, the average is the median.
- Median = 2646 / 27 = 98.

- The sum of 27 consecutive integers is 2646. What is the largest of those integers?
- In any arithmetic sequence, the average is the median.
- Median = 2646 / 27 = 98.
- There are 13 numbers above the median.

- The sum of 27 consecutive integers is 2646. What is the largest of those integers?
- In any arithmetic sequence, the average is the median.
- Median = 2646 / 27 = 98.
- There are 13 numbers above the median.
- Answer. 98 + 13 = 111

 If a, b, c, d are positive real numbers such that a, b, c, d form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a/d.

- If a, b, c, d are positive real numbers such that a, b, c, d form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a/d.
- We have b = a + Δ, c = a + 2Δ, and d = a + 3Δ, where Δ is a positive real number.

- If a, b, c, d are positive real numbers such that a, b, c, d form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a/d.
- We have b = a + Δ, c = a + 2Δ, and d = a + 3Δ, where Δ is a positive real number.
- Also, $b^2 = ad yields (a + \Delta)^2 = a(a + 3\Delta)$

- If a, b, c, d are positive real numbers such that a, b, c, d form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a/d.
- We have b = a + Δ, c = a + 2Δ, and d = a + 3Δ, where Δ is a positive real number.
- Also, $b^2 = ad yields (a + \Delta)^2 = a(a + 3\Delta)$
- $\Delta^2 = a\Delta$

- If a, b, c, d are positive real numbers such that a, b, c, d form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a/d.
- We have b = a + Δ, c = a + 2Δ, and d = a + 3Δ, where Δ is a positive real number.
- Also, $b^2 = ad yields (a + \Delta)^2 = a(a + 3\Delta)$
- $\Delta^2 = a\Delta$
- Δ = a, so the sequence is a, 2a, 3a, 4a,

- If a, b, c, d are positive real numbers such that a, b, c, d form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a/d.
- We have b = a + Δ, c = a + 2Δ, and d = a + 3Δ, where Δ is a positive real number.
- Also, $b^2 = ad yields (a + \Delta)^2 = a(a + 3\Delta)$
- $\Delta^2 = a\Delta$
- Δ = a, so the sequence is a, 2a, 3a, 4a,
- Answer: a/d = 1/4.

• The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.

- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.
- Let the first of the 18 integers be f.

- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.
- Let the first of the 18 integers be f.
- Sum = 18(f+f+17)/2 = 9(2f+17)

- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.
- Let the first of the 18 integers be f.
- Sum = 18(f+f+17)/2 = 9(2f+17)
- 2f + 17 must be a perfect square.

- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.
- Let the first of the 18 integers be f.
- Sum = 18(f+f+17)/2 = 9(2f+17)
- 2f + 17 must be a perfect square.
- Smallest such f is 4.

- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.
- Let the first of the 18 integers be f.
- Sum = 18(f+f+17)/2 = 9(2f+17)
- 2f + 17 must be a perfect square.
- Smallest such f is 4.
- Answer: Sum is 9(25) = 225.

- For all positive integers n less than 2002, let
 - an = 11, if n is divisible by 13 and 14;
 - an = 13, if n is divisible by 14 and 11;
 - an = 14, if n is divisible by 11 and 13;
 - an = 0, otherwise.
- Calculate $\sum_{n=1}^{2001} a_n$

- For all positive integers n less than 2002, let
 - an = 11, if n is divisible by 13 and 14;
 - an = 13, if n is divisible by 14 and 11;
 - an = 14, if n is divisible by 11 and 13;
 - an = 0, otherwise.
- Calculate $\sum_{n=1}^{2001} a_n$
- Notice 2002 = 11(13)(14)

- For all positive integers n less than 2002, let
 - an = 11, if n is divisible by 13 and 14;
 - an = 13, if n is divisible by 14 and 11;
 - an = 14, if n is divisible by 11 and 13;
 - an = 0, otherwise.
- Calculate $\sum_{n=1}^{2001} a_n$
- Notice 2002 = 11(13)(14)
- n < 2002 so

- For all positive integers n less than 2002, let
 - an = 11, if n is divisible by 13 and 14;
 - an = 13, if n is divisible by 14 and 11;
 - an = 14, if n is divisible by 11 and 13;
 - an = 0, otherwise.
- Calculate $\sum_{n=1}^{2001} a_n$
- Notice 2002 = 11(13)(14)
- n < 2002 so
- There are ten 11s, twelve 13s, and thirteen 14s.

- For all positive integers n less than 2002, let
 - an = 11, if n is divisible by 13 and 14;
 - an = 13, if n is divisible by 14 and 11;
 - an = 14, if n is divisible by 11 and 13;
 - an = 0, otherwise.
- Calculate $\sum_{n=1}^{2001} a_n$
- Notice 2002 = 11(13)(14)
- n < 2002 so
- There are ten 11s, twelve 13s, and thirteen 14s.
- The sum is 10(11) + 12(13) + 13(14)
- Answer 448.

• Let $\{a_k\}$ be a sequence of integers such that $a_1 = 1$ and $a_{m+n} = a_m + a_n + mn$, for all positive integers m and n. Find a_{12} .

- Let $\{a_k\}$ be a sequence of integers such that $a_1 = 1$ and $a_{m+n} = a_m + a_n + mn$, for all positive integers m and n. Find a_{12} .
- Consider the case when n=1.

- Let $\{a_k\}$ be a sequence of integers such that $a_1 = 1$ and $a_{m+n} = a_m + a_n + mn$, for all positive integers m and n. Find a_{12} .
- Consider the case when n=1.

•
$$a_{m+1} = a_m + 1 + (m)(1) = a_m + (m+1)$$

- Let $\{a_k\}$ be a sequence of integers such that $a_1 = 1$ and $a_{m+n} = a_m + a_n + mn$, for all positive integers m and n. Find a_{12} .
- Consider the case when n=1.
- $a_{m+1} = a_m + 1 + (m)(1) = a_m + (m+1)$
- $a_m = 1 + 2 + ... + m$

- Let $\{a_k\}$ be a sequence of integers such that $a_1 = 1$ and $a_{m+n} = a_m + a_n + mn$, for all positive integers m and n. Find a_{12} .
- Consider the case when n=1.
- $a_{m+1} = a_m + 1 + (m)(1) = a_m + (m+1)$
- a_m = 1 + 2 + ... + m
- $a_m = m(m+1)/2$

- Let $\{a_k\}$ be a sequence of integers such that $a_1 = 1$ and $a_{m+n} = a_m + a_n + mn$, for all positive integers m and n. Find a_{12} .
- Consider the case when n=1.
- $a_{m+1} = a_m + 1 + (m)(1) = a_m + (m+1)$
- a_m = 1 + 2 + ... + m
- $a_m = m(m+1)/2$
- $a_{12} = 12(13)/2 = 78$

• Let a_1, a_2, \ldots be a sequence for which $a_1 = 2$, $a_2 = 3$, and $a_n = a_{n-1}/a_{n-2}$ for each positive integer n > 2. What is a_{2006} ?

- Let a_1, a_2, \ldots be a sequence for which $a_1 = 2$, $a_2 = 3$, and $a_n = a_{n-1}/a_{n-2}$ for each positive integer n > 2. What is a_{2006} ?
- We cannot expect to find all terms from 1 to 2006 in a reasonable length of time.

- Let a_1, a_2, \ldots be a sequence for which $a_1 = 2$, $a_2 = 3$, and $a_n = a_{n-1}/a_{n-2}$ for each positive integer n > 2. What is a_{2006} ?
- We cannot expect to find all terms from 1 to 2006 in a reasonable length of time.
- We must look for a pattern.

- Let a_1, a_2, \ldots be a sequence for which $a_1 = 2$, $a_2 = 3$, and $a_n = a_{n-1}/a_{n-2}$ for each positive integer n > 2. What is a_{2006} ?
- We cannot expect to find all terms from 1 to 2006 in a reasonable length of time.
- We must look for a pattern.
- $a_3 = 3/2$, $a_4 = 1/2$, $a_5 = 1/3$, $a_6 = 2/3$, $a_7 = 2$, $a_8 = 3$.

- Let a_1, a_2, \ldots be a sequence for which $a_1 = 2$, $a_2 = 3$, and $a_n = a_{n-1}/a_{n-2}$ for each positive integer n > 2. What is a_{2006} ?
- We cannot expect to find all terms from 1 to 2006 in a reasonable length of time.
- We must look for a pattern.
- $a_3 = 3/2$, $a_4 = 1/2$, $a_5 = 1/3$, $a_6 = 2/3$, $a_7 = 2$, $a_8 = 3$.
- The sequence is periodic with a period of 6,

- Let a_1, a_2, \ldots be a sequence for which $a_1 = 2$, $a_2 = 3$, and $a_n = a_{n-1}/a_{n-2}$ for each positive integer n > 2. What is a_{2006} ?
- We cannot expect to find all terms from 1 to 2006 in a reasonable length of time.
- We must look for a pattern.
- $a_3 = 3/2$, $a_4 = 1/2$, $a_5 = 1/3$, $a_6 = 2/3$, $a_7 = 2$, $a_8 = 3$.
- The sequence is periodic with a period of 6,
- so $a_{2006} = a_2 = 3$.

Consider the sequence of numbers: 4, 7, 1, 8, 9, 7, 6,
 For n > 2, the nth term of the sequence is the units digit of the sum of the two previous terms. Let S_n denote the sum of the first n terms of this sequence. What is the smallest value of n for which S_n > 10, 000?

- Consider the sequence of numbers: 4, 7, 1, 8, 9, 7, 6, For n > 2, the nth term of the sequence is the units digit of the sum of the two previous terms. Let S_n denote the sum of the first n terms of this sequence. What is the smallest value of n for which $S_n > 10,000$?
- Writing out more terms of the sequence yields

4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1

- Consider the sequence of numbers: 4, 7, 1, 8, 9, 7, 6, For n > 2, the nth term of the sequence is the units digit of the sum of the two previous terms. Let S_n denote the sum of the first n terms of this sequence. What is the smallest value of n for which $S_n > 10,000$?
- Writing out more terms of the sequence yields
 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1
- The sequence repeats itself, starting with the 13th term.

- Consider the sequence of numbers: 4, 7, 1, 8, 9, 7, 6, For n > 2, the nth term of the sequence is the units digit of the sum of the two previous terms. Let S_n denote the sum of the first n terms of this sequence. What is the smallest value of n for which $S_n > 10,000$?
- Writing out more terms of the sequence yields
 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1
- The sequence repeats itself, starting with the 13th term.
- Because $S_{12} = 60$, $S_{12k} = 60k$ for all positive integers k.

- Consider the sequence of numbers: 4, 7, 1, 8, 9, 7, 6, For n > 2, the nth term of the sequence is the units digit of the sum of the two previous terms. Let S_n denote the sum of the first n terms of this sequence. What is the smallest value of n for which $S_n > 10,000$?
- Writing out more terms of the sequence yields
 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1
- The sequence repeats itself, starting with the 13th term.
- Because $S_{12} = 60$, $S_{12k} = 60k$ for all positive integers k.
- The largest k for which $S_{12k} \le 10,000$ is
- k = [10, 000/60] = 166, and $S_{12(166)} = 60(166) = 9960$.

- Writing out more terms of the sequence yields
 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1
- The sequence repeats itself, starting with the 13th term.
- Because $S_{12} = 60$, $S_{12k} = 60k$ for all positive integers k.
- The largest k for which $S_{12k} \le 10,000$ is
- k = [10, 000/60] = 166, and $S_{12(166)} = 60(166) = 9960$.

- Writing out more terms of the sequence yields
 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1
- The sequence repeats itself, starting with the 13th term.
- Because $S_{12} = 60$, $S_{12k} = 60k$ for all positive integers k.
- The largest k for which $S_{12k} \le 10,000$ is
- k = [10, 000/60] = 166, and $S_{12(166)} = 60(166) = 9960$.
- To have S_n > 10, 000, add enough additional terms for their sum to exceed 40.

- Writing out more terms of the sequence yields
 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1
- The sequence repeats itself, starting with the 13th term.
- Because $S_{12} = 60$, $S_{12k} = 60k$ for all positive integers k.
- The largest k for which $S_{12k} \le 10,000$ is
- k = [10, 000/60] = 166, and $S_{12(166)} = 60(166) = 9960$.
- To have S_n > 10, 000, add enough additional terms for their sum to exceed 40.
- This can be done by adding the next 7 terms of the sequence, since their sum is 42.

- Writing out more terms of the sequence yields
 4, 7, 1, 8, 9, 7, 6, 3, 9, 2, 1, 3, 4, 7, 1
- The sequence repeats itself, starting with the 13th term.
- Because $S_{12} = 60$, $S_{12k} = 60k$ for all positive integers k.
- The largest k for which $S_{12k} \le 10,000$ is
- k = [10, 000/60] = 166, and $S_{12(166)} = 60(166) = 9960$.
- To have S_n > 10, 000, add enough additional terms for their sum to exceed 40.
- This can be done by adding the next 7 terms of the sequence, since their sum is 42.
- Thus, the smallest value of n is 12(166) + 7 = 1999.

- Suppose that $\{a_n\}$ is an arithmetic sequence with
- $a_1 + a_2 + \cdots + a_{100} = 100$ and
- $a_{101} + a_{102} + \cdot \cdot \cdot + a_{200} = 200$.
- What is the value of $a_2 a_1$?

- Suppose that $\{a_n\}$ is an arithmetic sequence with
- $a_1 + a_2 + \cdots + a_{100} = 100$ and
- $a_{101} + a_{102} + \cdot \cdot \cdot + a_{200} = 200$.
- What is the value of $a_2 a_1$?
- Let $\Delta = a_2 a_1$

- Suppose that $\{a_n\}$ is an arithmetic sequence with
- $a_1 + a_2 + \cdots + a_{100} = 100$ and
- $a_{101} + a_{102} + \cdot \cdot \cdot + a_{200} = 200$.
- What is the value of $a_2 a_1$?
- Let $\Delta = a_2 a_1$
- $a_{101} a_1 = 100\Delta = a_{100+n} a_n$ for all n

- Suppose that $\{a_n\}$ is an arithmetic sequence with
- $a_1 + a_2 + \cdots + a_{100} = 100$ and
- $a_{101} + a_{102} + \cdot \cdot \cdot + a_{200} = 200$.
- What is the value of $a_2 a_1$?
- Let $\Delta = a_2 a_1$
- $a_{101} a_1 = 100\Delta = a_{100+n} a_n$ for all n
- $(a_{101} + a_{102} + \cdots + a_{200}) = 200$
- $-(a_1 + a_2 + \cdots + a_{100}) = 100$

- Suppose that $\{a_n\}$ is an arithmetic sequence with
- $a_1 + a_2 + \cdots + a_{100} = 100$ and
- $a_{101} + a_{102} + \cdot \cdot \cdot + a_{200} = 200$.
- What is the value of $a_2 a_1$?
- Let $\Delta = a_2 a_1$
- $a_{101} a_1 = 100\Delta = a_{100+n} a_n$ for all n
- $(a_{101} + a_{102} + \cdot \cdot \cdot + a_{200}) = 200$
- $-(a_1 + a_2 + \cdots + a_{100}) = 100$
- 100(100Δ) = 100

- Suppose that $\{a_n\}$ is an arithmetic sequence with
- $a_1 + a_2 + \cdots + a_{100} = 100$ and
- $a_{101} + a_{102} + \cdot \cdot \cdot + a_{200} = 200$.
- What is the value of $a_2 a_1$?
- Let $\Delta = a_2 a_1$
- $a_{101} a_1 = 100\Delta = a_{100+n} a_n$ for all n
- $(a_{101} + a_{102} + \cdots + a_{200}) = 200$
- $-(a_1 + a_2 + \cdots + a_{100}) = 100$
- 100(100Δ) = 100
- $\Delta = 1/100 = a_2 a_1$

• Given a finite sequence $S = (a_1, a_2, \ldots, a_n)$ of nreal numbers, let A(S) be the sequence $((a_1 + a_2)/2, (a_2 + a_3)/2, \ldots, (a_{n-1} + a_n)/2)$ of n-1real numbers. Define $A^1(S) = A(S)$ and, for each integer m, 1 < m < n, define $A^m(S) = A(A^{m-1}(S))$. Suppose x > 0, and let $S = (1, x, x^2, \ldots, x^{100})$. If $A^{100}(S) = 1/2^{50}$, then what is x?

- Given a finite sequence $S = (a_1, a_2, \ldots, a_n)$ of nreal numbers, let A(S) be the sequence $((a_1 + a_2)/2, (a_2 + a_3)/2, \ldots, (a_{n-1} + a_n)/2)$ of n-1real numbers. Define $A^1(S) = A(S)$ and, for each integer m, 1 < m < n, define $A^m(S) = A(A^{m-1}(S))$. Suppose x > 0, and let $S = (1, x, x^2, \ldots, x^{100})$. If $A^{100}(S) = 1/2^{50}$, then what is x?
- It is clear that the denominator of each term of A^m(S) = 2^m.

- Given a finite sequence $S = (a_1, a_2, \ldots, a_n)$ of nreal numbers, let A(S) be the sequence $((a_1 + a_2)/2, (a_2 + a_3)/2, \ldots, (a_{n-1} + a_n)/2)$ of n-1real numbers. Define $A^1(S) = A(S)$ and, for each integer m, 1 < m < n, define $A^m(S) = A(A^{m-1}(S))$. Suppose x > 0, and let $S = (1, x, x^2, \ldots, x^{100})$. If $A^{100}(S) = 1/2^{50}$, then what is x?
- It is clear that the denominator of each term of A^m(S) = 2^m.
- Let's investigate the numerators of each term.

• S is 1, x, x², x³, x⁴, ...

- S is 1, x, x², x³, x⁴, ...
- The numerators of $A^{1}(S) = 1+x, x+x^{2}, x^{2}+x^{3}, ...$

- S is 1, x, x², x³, x⁴, ...
- The numerators of $A^{1}(S) = 1+x, x+x^{2}, x^{2}+x^{3}, ...$
- The numerators of $A^{2}(S) = 1+2x+x^{2}, x+2x^{2}+x^{3},...$

- S is 1, x, x², x³, x⁴, ...
- The numerators of $A^{1}(S) = 1+x, x+x^{2}, x^{2}+x^{3}, ...$
- The numerators of $A^{2}(S) = 1+2x+x^{2}, x+2x^{2}+x^{3},...$
- The numerators of $A^{3}(S) = 1+3x+3x^{2}+x^{3}, ...$

- S is 1, x, x², x³, x⁴, ...
- The numerators of $A^{1}(S) = 1+x, x+x^{2}, x^{2}+x^{3}, ...$
- The numerators of $A^{2}(S) = 1+2x+x^{2}, x+2x^{2}+x^{3},...$
- The numerators of $A^{3}(S) = 1+3x+3x^{2}+x^{3}, ...$
- The numerator of the 1^{st} term of $A^m(S) = (1+x)^m$

- S is 1, x, x², x³, x⁴, ...
- The numerators of $A^{1}(S) = 1+x, x+x^{2}, x^{2}+x^{3}, ...$
- The numerators of $A^{2}(S) = 1+2x+x^{2}, x+2x^{2}+x^{3},...$
- The numerators of $A^{3}(S) = 1+3x+3x^{2}+x^{3}, ...$
- The numerator of the 1st term of $A^m(S) = (1+x)^m$
- A^m(S) has one fewer term than A^{m-1}(S) and A¹(S) has 100 terms

- S is 1, x, x², x³, x⁴, ...
- The numerators of $A^{1}(S) = 1+x, x+x^{2}, x^{2}+x^{3}, ...$
- The numerators of $A^{2}(S) = 1+2x+x^{2}, x+2x^{2}+x^{3},...$
- The numerators of $A^{3}(S) = 1+3x+3x^{2}+x^{3}, ...$
- The numerator of the 1st term of $A^m(S) = (1+x)^m$
- A^m(S) has one fewer term than A^{m-1}(S) and A¹(S) has 100 terms
- $A^{100}(S)$ has exactly one term.

- S is 1, x, x², x³, x⁴, ...
- The numerators of $A^{1}(S) = 1+x, x+x^{2}, x^{2}+x^{3}, ...$
- The numerators of $A^{2}(S) = 1+2x+x^{2}, x+2x^{2}+x^{3},...$
- The numerators of $A^{3}(S) = 1+3x+3x^{2}+x^{3}, ...$
- The numerator of the 1^{st} term of $A^m(S) = (1+x)^m$
- A^m(S) has one fewer term than A^{m-1}(S) and A¹(S) has 100 terms
- $A^{100}(S)$ has exactly one term.
- $A^{100}(S) = (1 + x)^{100} / 2^{100} = 1 / 2^{50}$

• $(1 + x)^{100} / 2^{100} = 1 / 2^{50}$

- $(1 + x)^{100} / 2^{100} = 1 / 2^{50}$
- $(1 + x)^2 / 2^2 = 1 / 2$

- $(1 + x)^{100} / 2^{100} = 1 / 2^{50}$
- $(1 + x)^2 / 2^2 = 1 / 2$
- $(1 + x)^2 = 2$

- $(1 + x)^{100} / 2^{100} = 1 / 2^{50}$
- $(1 + x)^2 / 2^2 = 1 / 2$
- $(1 + x)^2 = 2$
- 1 + x = $\sqrt{2}$

- $(1 + x)^{100} / 2^{100} = 1 / 2^{50}$
- $(1 + x)^2 / 2^2 = 1 / 2$
- $(1 + x)^2 = 2$
- 1 + x = $\sqrt{2}$
- $x = \sqrt{2} 1$