SEQUENCE AND SERIES WORKSHEET SOLUTIONS

PROBLEM 1

- The sum of 27 consecutive integers is 2646. What is the largest of those integers?

PROBLEM 1

- The sum of 27 consecutive integers is 2646. What is the largest of those integers?
- In any arithmetic sequence, the average is the median.

PROBLEM 1

- The sum of 27 consecutive integers is 2646. What is the largest of those integers?
- In any arithmetic sequence, the average is the median.
- Median $=2646 / 27=98$.

PROBLEM 1

- The sum of 27 consecutive integers is 2646. What is the largest of those integers?
- In any arithmetic sequence, the average is the median.
- Median = $2646 / 27=98$.
- There are 13 numbers above the median.

PROBLEM 1

- The sum of 27 consecutive integers is 2646. What is the largest of those integers?
- In any arithmetic sequence, the average is the median.
- Median = $2646 / 27=98$.
- There are 13 numbers above the median.
- Answer. 98 + 13 = 111

PROBLEM 2

- If a, b, c, d are positive real numbers such that a, $\mathrm{b}, \mathrm{c}, \mathrm{d}$ form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a / d.

PROBLEM 2

- If a, b, c, d are positive real numbers such that a, $\mathrm{b}, \mathrm{c}, \mathrm{d}$ form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a / d.
- We have $\mathrm{b}=\mathrm{a}+\Delta, \mathrm{c}=\mathrm{a}+2 \Delta$, and $\mathrm{d}=\mathrm{a}+3 \Delta$, where Δ is a positive real number.

PROBLEM 2

- If a, b, c, d are positive real numbers such that a, $\mathrm{b}, \mathrm{c}, \mathrm{d}$ form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a / d.
- We have $\mathrm{b}=\mathrm{a}+\Delta, \mathrm{c}=\mathrm{a}+2 \Delta$, and $\mathrm{d}=\mathrm{a}+3 \Delta$, where Δ is a positive real number.
- Also, $\mathrm{b}^{2}=$ ad yields $(\mathrm{a}+\Delta)^{2}=\mathrm{a}(\mathrm{a}+3 \Delta)$

PROBLEM 2

- If a, b, c, d are positive real numbers such that a, $\mathrm{b}, \mathrm{c}, \mathrm{d}$ form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a / d.
- We have $\mathrm{b}=\mathrm{a}+\Delta, \mathrm{c}=\mathrm{a}+2 \Delta$, and $\mathrm{d}=\mathrm{a}+3 \Delta$, where Δ is a positive real number.
- Also, $\mathrm{b}^{2}=$ ad yields $(\mathrm{a}+\Delta)^{2}=\mathrm{a}(\mathrm{a}+3 \Delta)$
- $\Delta^{2}=\mathrm{a} \Delta$

PROBLEM 2

- If a, b, c, d are positive real numbers such that a, $\mathrm{b}, \mathrm{c}, \mathrm{d}$ form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a / d.
- We have $\mathrm{b}=\mathrm{a}+\Delta, \mathrm{c}=\mathrm{a}+2 \Delta$, and $\mathrm{d}=\mathrm{a}+3 \Delta$, where Δ is a positive real number.
- Also, $\mathrm{b}^{2}=$ ad yields $(\mathrm{a}+\Delta)^{2}=\mathrm{a}(\mathrm{a}+3 \Delta)$
- $\Delta^{2}=\mathrm{a} \Delta$
- $\Delta=a$, so the sequence is $a, 2 a, 3 a, 4 a, \ldots$.

PROBLEM 2

- If a, b, c, d are positive real numbers such that a, $\mathrm{b}, \mathrm{c}, \mathrm{d}$ form an increasing arithmetic sequence and a, b, d form a geometric sequence, find a / d.
- We have $b=a+\Delta, c=a+2 \Delta$, and $d=a+3 \Delta$, where Δ is a positive real number.
- Also, $\mathrm{b}^{2}=$ ad yields $(\mathrm{a}+\Delta)^{2}=\mathrm{a}(\mathrm{a}+3 \Delta)$
- $\Delta^{2}=\mathrm{a} \Delta$
- $\Delta=a$, so the sequence is $a, 2 a, 3 a, 4 a, \ldots$.
- Answer: a/d = 1/4.

PROBLEM 3

- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.

PROBLEM 3

- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.
- Let the first of the 18 integers be f .

PROBLEM 3

- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.
- Let the first of the 18 integers be f.
- Sum $=18(\mathrm{f}+\mathrm{f}+17) / 2=9(2 \mathrm{f}+17)$

PROBLEM 3

- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.
- Let the first of the 18 integers be f.
- Sum $=18(f+f+17) / 2=9(2 f+17)$
- $2 f+17$ must be a perfect square.

PROBLEM 3

- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.
- Let the first of the 18 integers be f .
- Sum $=18(f+f+17) / 2=9(2 f+17)$
- $2 f+17$ must be a perfect square.
- Smallest such fis 4 .
- The sum of 18 consecutive positive integers is a perfect square. Find the smallest possible value of this sum.
- Let the first of the 18 integers be f .
- Sum $=18(f+f+17) / 2=9(2 f+17)$
- $2 f+17$ must be a perfect square.
- Smallest such fis 4.
- Answer: Sum is $9(25)=225$.

PROBLEM 4

- For all positive integers n less than 2002, let
- an $=11$, if n is divisible by 13 and 14;
$-a n=13$, if n is divisible by 14 and 11;
$-\mathrm{an}=14$, if n is divisible by 11 and 13 ;
- an $=0$, otherwise.
- Calculate $\sum_{n=1}^{2 m} a_{n}$

PROBLEM 4

- For all positive integers n less than 2002, let
- an $=11$, if n is divisible by 13 and 14;
$-a n=13$, if n is divisible by 14 and 11;
$-\mathrm{an}=14$, if n is divisible by 11 and 13 ;
- an $=0$, otherwise.
- Calculate $\sum_{n=1}^{2 n a_{n}} a_{n}$
- Notice $2002=11(13)(14)$

PROBLEM 4

- For all positive integers n less than 2002, let
- an $=11$, if n is divisible by 13 and 14;
$-a n=13$, if n is divisible by 14 and 11;
$-\mathrm{an}=14$, if n is divisible by 11 and 13 ;
- an $=0$, otherwise.
- Calculate $\sum_{n=1}^{2 m a} a_{n}$
- Notice $2002=11(13)(14)$
- $\mathrm{n}<2002$ so

PROBLEM 4

- For all positive integers n less than 2002, let
- an $=11$, if n is divisible by 13 and 14;
$-a n=13$, if n is divisible by 14 and 11;
$-\mathrm{an}=14$, if n is divisible by 11 and 13 ;
- an $=0$, otherwise.
- Calculate $\sum_{n=1}^{2 m i m} a_{n}$
- Notice $2002=11(13)(14)$
- $\mathrm{n}<2002$ so
- There are ten 11s, twelve 13s, and thirteen 14 s .

PROBLEM 4

- For all positive integers n less than 2002, let
- an $=11$, if n is divisible by 13 and 14;
$-a n=13$, if n is divisible by 14 and 11;
$-\mathrm{an}=14$, if n is divisible by 11 and 13 ;
- an $=0$, otherwise.
- Calculate $\sum_{n=1}^{2 n a_{n}} a_{n}$
- Notice $2002=11(13)(14)$
- $\mathrm{n}<2002$ so
- There are ten 11 s , twelve 13 s , and thirteen 14 s .
- The sum is $10(11)+12(13)+13(14)$
- Answer 448.

PROBLEM 5

- Let $\left\{a_{k}\right\}$ be a sequence of integers such that $a_{1}=1$ and $a_{m+n}=a_{m}+a_{n}+m n$,for all positive integers m and n . Find a_{12}.

PROBLEM 5

- Let $\left\{a_{k}\right\}$ be a sequence of integers such that $a_{1}=1$ and $a_{m+n}=a_{m}+a_{n}+m n$,for all positive integers m and n. Find a_{12}.
- Consider the case when $\mathrm{n}=1$.

PROBLEM 5

- Let $\left\{a_{k}\right\}$ be a sequence of integers such that $a_{1}=1$ and $a_{m+n}=a_{m}+a_{n}+m n$,for all positive integers m and n. Find a_{12}.
- Consider the case when $\mathrm{n}=1$.
- $\mathrm{a}_{\mathrm{m}+1}=\mathrm{a}_{\mathrm{m}}+1+(\mathrm{m})(1)=\mathrm{a}_{\mathrm{m}}+(\mathrm{m}+1)$

PROBLEM 5

- Let $\left\{a_{k}\right\}$ be a sequence of integers such that $a_{1}=1$ and $a_{m+n}=a_{m}+a_{n}+m n$,for all positive integers m and n. Find a_{12}.
- Consider the case when $\mathrm{n}=1$.
- $\mathrm{a}_{\mathrm{m}+1}=\mathrm{a}_{\mathrm{m}}+1+(\mathrm{m})(1)=\mathrm{a}_{\mathrm{m}}+(\mathrm{m}+1)$
- $a_{m}=1+2+\ldots+m$

PROBLEM 5

- Let $\left\{a_{k}\right\}$ be a sequence of integers such that $a_{1}=1$ and $a_{m+n}=a_{m}+a_{n}+m n$,for all positive integers m and n. Find a_{12}.
- Consider the case when $\mathrm{n}=1$.
- $\mathrm{a}_{\mathrm{m}+1}=\mathrm{a}_{\mathrm{m}}+1+(\mathrm{m})(1)=\mathrm{a}_{\mathrm{m}}+(\mathrm{m}+1)$
- $a_{m}=1+2+\ldots+m$
- $a_{m}=m(m+1) / 2$

PROBLEM 5

- Let $\left\{a_{k}\right\}$ be a sequence of integers such that $a_{1}=1$ and $a_{m+n}=a_{m}+a_{n}+m n$,for all positive integers m and n. Find a_{12}.
- Consider the case when $\mathrm{n}=1$.
- $\mathrm{a}_{\mathrm{m}+1}=\mathrm{a}_{\mathrm{m}}+1+(\mathrm{m})(1)=\mathrm{a}_{\mathrm{m}}+(\mathrm{m}+1)$
- $a_{m}=1+2+\ldots+m$
- $a_{m}=m(m+1) / 2$
- $a_{12}=12(13) / 2=78$

PROBLEM 6

- Let a_{1}, a_{2}, \ldots be a sequence for which $a_{1}=2$, $a_{2}=3$, and $a_{n}=a_{n-1} / a_{n-2}$ for each positive integer $n>2$. What is a_{2006} ?

PROBLEM 6

- Let a_{1}, a_{2}, \ldots be a sequence for which $a_{1}=2$, $a_{2}=3$, and $a_{n}=a_{n-1} / a_{n-2}$ for each positive integer $n>2$. What is a_{2006} ?
- We cannot expect to find all terms from 1 to 2006 in a reasonable length of time.

PROBLEM 6

- Let a_{1}, a_{2}, \ldots be a sequence for which $a_{1}=2$, $a_{2}=3$, and $a_{n}=a_{n-1} / a_{n-2}$ for each positive integer $n>2$. What is a_{2006} ?
- We cannot expect to find all terms from 1 to 2006 in a reasonable length of time.
- We must look for a pattern.

PROBLEM 6

- Let a_{1}, a_{2}, \ldots be a sequence for which $a_{1}=2$, $a_{2}=3$, and $a_{n}=a_{n-1} / a_{n-2}$ for each positive integer $\mathrm{n}>2$. What is a_{2006} ?
- We cannot expect to find all terms from 1 to 2006 in a reasonable length of time.
- We must look for a pattern.
- $a_{3}=3 / 2, a_{4}=1 / 2, a_{5}=1 / 3, a_{6}=2 / 3, a_{7}=2, a_{8}=3$.

PROBLEM 6

- Let a_{1}, a_{2}, \ldots be a sequence for which $a_{1}=2$, $a_{2}=3$, and $a_{n}=a_{n-1} / a_{n-2}$ for each positive integer $n>2$. What is a_{2006} ?
- We cannot expect to find all terms from 1 to 2006 in a reasonable length of time.
- We must look for a pattern.
- $a_{3}=3 / 2, a_{4}=1 / 2, a_{5}=1 / 3, a_{6}=2 / 3, a_{7}=2, a_{8}=3$.
- The sequence is periodic with a period of 6 ,

PROBLEM 6

- Let a_{1}, a_{2}, \ldots be a sequence for which $a_{1}=2$, $a_{2}=3$, and $a_{n}=a_{n-1} / a_{n-2}$ for each positive integer $n>2$. What is a_{2006} ?
- We cannot expect to find all terms from 1 to 2006 in a reasonable length of time.
- We must look for a pattern.
- $a_{3}=3 / 2, a_{4}=1 / 2, a_{5}=1 / 3, a_{6}=2 / 3, a_{7}=2, a_{8}=3$.
- The sequence is periodic with a period of 6 ,
- so $a_{2006}=a_{2}=3$.

PROBLEM 7

- Consider the sequence of numbers: $4,7,1,8,9,7,6, \ldots$.. For $n>2$, the $\mathrm{n}^{\text {th }}$ term of the sequence is the units digit of the sum of the two previous terms. Let S_{n} denote the sum of the first n terms of this sequence. What is the smallest value of n for which $S_{n}>10,000$?

PROBLEM 7

- Consider the sequence of numbers: $4,7,1,8,9,7,6, \ldots$.. For $n>2$, the $\mathrm{n}^{\text {th }}$ term of the sequence is the units digit of the sum of the two previous terms. Let S_{n} denote the sum of the first n terms of this sequence. What is the smallest value of n for which $S_{n}>10,000$?
- Writing out more terms of the sequence yields

$$
4,7,1,8,9,7,6,3,9,2,1,3,4,7,1 \ldots
$$

PROBLEM 7

- Consider the sequence of numbers: $4,7,1,8,9,7,6, \ldots$ For $n>2$, the $\mathrm{n}^{\text {th }}$ term of the sequence is the units digit of the sum of the two previous terms. Let S_{n} denote the sum of the first n terms of this sequence. What is the smallest value of n for which $S_{n}>10,000$?
- Writing out more terms of the sequence yields

$$
4,7,1,8,9,7,6,3,9,2,1,3,4,7,1 \ldots
$$

- The sequence repeats itself, starting with the 13 th term.

PROBLEM 7

- Consider the sequence of numbers: $4,7,1,8,9,7,6, \ldots$ For $n>2$, the $\mathrm{n}^{\text {th }}$ term of the sequence is the units digit of the sum of the two previous terms. Let S_{n} denote the sum of the first n terms of this sequence. What is the smallest value of n for which $S_{n}>10,000$?
- Writing out more terms of the sequence yields

$$
4,7,1,8,9,7,6,3,9,2,1,3,4,7,1 \ldots
$$

- The sequence repeats itself, starting with the 13th term.
- Because $S_{12}=60, S_{12 k}=60 \mathrm{k}$ for all positive integers k .

PROBLEM 7

- Consider the sequence of numbers: $4,7,1,8,9,7,6, \ldots$.. For $n>2$, the $n^{\text {th }}$ term of the sequence is the units digit of the sum of the two previous terms. Let S_{n} denote the sum of the first n terms of this sequence. What is the smallest value of n for which $S_{n}>10,000$?
- Writing out more terms of the sequence yields

$$
4,7,1,8,9,7,6,3,9,2,1,3,4,7,1 \ldots
$$

- The sequence repeats itself, starting with the 13th term.
- Because $S_{12}=60, S_{12 k}=60 \mathrm{k}$ for all positive integers k .
- The largest k for which $S_{12 k} \leq 10,000$ is
- $\mathrm{k}=[10,000 / 60]=166$, and $\mathrm{S}_{12(166)}=60(166)=9960$.

PROBLEM 7

- Writing out more terms of the sequence yields

$$
4,7,1,8,9,7,6,3,9,2,1,3,4,7,1 \ldots
$$

- The sequence repeats itself, starting with the 13th term.
- Because $S_{12}=60, S_{12 k}=60 \mathrm{k}$ for all positive integers k .
- The largest k for which $S_{12 k} \leq 10,000$ is
- $k=[10,000 / 60]=166$, and $S_{12(166)}=60(166)=9960$.

PROBLEM 7

- Writing out more terms of the sequence yields

$$
4,7,1,8,9,7,6,3,9,2,1,3,4,7,1 \ldots
$$

- The sequence repeats itself, starting with the 13th term.
- Because $S_{12}=60, S_{12 k}=60 \mathrm{k}$ for all positive integers k .
- The largest k for which $S_{12 k} \leq 10,000$ is
- $\mathrm{k}=[10,000 / 60]=166$, and $\mathrm{S}_{12(166)}=60(166)=9960$.
- To have $S_{n}>10,000$, add enough additional terms for their sum to exceed 40.

PROBLEM 7

- Writing out more terms of the sequence yields

$$
4,7,1,8,9,7,6,3,9,2,1,3,4,7,1 \ldots
$$

- The sequence repeats itself, starting with the 13th term.
- Because $S_{12}=60, S_{12 k}=60 \mathrm{k}$ for all positive integers k .
- The largest k for which $S_{12 k} \leq 10,000$ is
- $k=[10,000 / 60]=166$, and $S_{12(166)}=60(166)=9960$.
- To have $S_{n}>10,000$, add enough additional terms for their sum to exceed 40.
- This can be done by adding the next 7 terms of the sequence, since their sum is 42 .

PROBLEM 7

- Writing out more terms of the sequence yields

$$
4,7,1,8,9,7,6,3,9,2,1,3,4,7,1 \ldots
$$

- The sequence repeats itself, starting with the 13th term.
- Because $S_{12}=60, S_{12 \mathrm{k}}=60 \mathrm{k}$ for all positive integers k .
- The largest k for which $S_{12 k} \leq 10,000$ is
- $k=[10,000 / 60]=166$, and $S_{12(166)}=60(166)=9960$.
- To have $S_{n}>10,000$, add enough additional terms for their sum to exceed 40.
- This can be done by adding the next 7 terms of the sequence, since their sum is 42 .
- Thus, the smallest value of n is $12(166)+7=1999$.

PROBLEM 8

- Suppose that $\left\{a_{n}\right\}$ is an arithmetic sequence with
- $\mathrm{a}_{1}+\mathrm{a}_{2}+\cdot \cdot \cdot+\mathrm{a}_{100}=100$ and
- $a_{101}+a_{102}+\cdot \cdot \cdot+a_{200}=200$.
- What is the value of $a_{2}-a_{1}$?

PROBLEM 8

- Suppose that $\left\{a_{n}\right\}$ is an arithmetic sequence with
- $\mathrm{a}_{1}+\mathrm{a}_{2}+\cdot \cdot \cdot+\mathrm{a}_{100}=100$ and
- $a_{101}+a_{102}+\cdot \cdot \cdot+a_{200}=200$.
- What is the value of $a_{2}-a_{1}$?
- Let $\Delta=a_{2}-a_{1}$

PROBLEM 8

- Suppose that $\left\{a_{n}\right\}$ is an arithmetic sequence with
- $\mathrm{a}_{1}+\mathrm{a}_{2}+\cdot \cdot \cdot+\mathrm{a}_{100}=100$ and
- $a_{101}+a_{102}+\cdot \cdot \cdot+a_{200}=200$.
- What is the value of $a_{2}-a_{1}$?
- Let $\Delta=a_{2}-a_{1}$
- $a_{101}-a_{1}=100 \Delta=a_{100+n}-a_{n}$ for all n

PROBLEM 8

- Suppose that $\left\{a_{n}\right\}$ is an arithmetic sequence with
- $\mathrm{a}_{1}+\mathrm{a}_{2}+\cdot \cdot \cdot+\mathrm{a}_{100}=100$ and
- $\mathrm{a}_{101}+\mathrm{a}_{102}+\cdot \cdot \cdot+\mathrm{a}_{200}=200$.
- What is the value of $a_{2}-a_{1}$?
- Let $\Delta=a_{2}-a_{1}$
- $a_{101}-a_{1}=100 \Delta=a_{100+n}-a_{n}$ for all n
- $\left(\mathrm{a}_{101}+\mathrm{a}_{102}+\cdots \cdot+\mathrm{a}_{200}\right)=200$
- $-\left(a_{1}+a_{2}+\cdots+a_{100}\right)=100$

PROBLEM 8

- Suppose that $\left\{a_{n}\right\}$ is an arithmetic sequence with
- $a_{1}+a_{2}+\cdot \cdot \cdot+a_{100}=100$ and
- $\mathrm{a}_{101}+\mathrm{a}_{102}+\cdot \cdot \cdot+\mathrm{a}_{200}=200$.
- What is the value of $a_{2}-a_{1}$?
- Let $\Delta=a_{2}-a_{1}$
- $a_{101}-a_{1}=100 \Delta=a_{100+n}-a_{n}$ for all n
- $\left(\mathrm{a}_{101}+\mathrm{a}_{102}+\cdots \cdot+\mathrm{a}_{200}\right)=200$
$\cdot-\left(a_{1}+a_{2}+\cdot \cdot+a_{100}\right)=100$
- $100(100 \Delta)=100$

PROBLEM 8

- Suppose that $\left\{a_{n}\right\}$ is an arithmetic sequence with
- $\mathrm{a}_{1}+\mathrm{a}_{2}+\cdot \cdot \cdot+\mathrm{a}_{100}=100$ and
- $\mathrm{a}_{101}+\mathrm{a}_{102}+\cdot \cdot \cdot+\mathrm{a}_{200}=200$.
- What is the value of $a_{2}-a_{1}$?
- Let $\Delta=a_{2}-a_{1}$
- $a_{101}-a_{1}=100 \Delta=a_{100+n}-a_{n}$ for all n
- $\left(\mathrm{a}_{101}+\mathrm{a}_{102}+\cdots \cdot+\mathrm{a}_{200}\right)=200$
$\cdot-\left(a_{1}+a_{2}+\cdot \cdot+a_{100}\right)=100$
- $100(100 \Delta)=100$
- $\Delta=1 / 100=a_{2}-a_{1}$

PROBLEM 9

- Given a finite sequence $S=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of n real numbers, let $A(S)$ be the sequence $\left(\left(a_{1}+a_{2}\right) / 2,\left(a_{2}+a_{3}\right) / 2, \ldots,\left(a_{n-1}+a_{n}\right) / 2\right)$ of $n-1$ real numbers. Define $A^{1}(S)=A(S)$ and, for each integer $m, 1<m<n$, define $A^{m}(S)=A\left(A^{m-1}(S)\right)$. Suppose $x>0$, and let $S=\left(1, x, x^{2}, \ldots, x^{100}\right)$. If $A^{100}(S)=1 / 2^{50}$, then what is x ?

PROBLEM 9

- Given a finite sequence $S=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of n real numbers, let $A(S)$ be the sequence $\left(\left(a_{1}+a_{2}\right) / 2,\left(a_{2}+a_{3}\right) / 2, \ldots,\left(a_{n-1}+a_{n}\right) / 2\right)$ of $n-1$ real numbers. Define $A^{1}(S)=A(S)$ and, for each integer $m, 1<m<n$, define $A^{m}(S)=A\left(A^{m-1}(S)\right)$. Suppose $x>0$, and let $S=\left(1, x, x^{2}, \ldots, x^{100}\right)$. If $A^{100}(S)=1 / 2^{50}$, then what is x ?
- It is clear that the denominator of each term of $A^{m}(S)=2^{m}$.

PROBLEM 9

- Given a finite sequence $S=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of n real numbers, let $A(S)$ be the sequence $\left(\left(a_{1}+a_{2}\right) / 2,\left(a_{2}+a_{3}\right) / 2, \ldots,\left(a_{n-1}+a_{n}\right) / 2\right)$ of $n-1$ real numbers. Define $A^{1}(S)=A(S)$ and, for each integer $m, 1<m<n$, define $A^{m}(S)=A\left(A^{m-1}(S)\right)$. Suppose $x>0$, and let $S=\left(1, x, x^{2}, \ldots, x^{100}\right)$. If $A^{100}(S)=1 / 2^{50}$, then what is x ?
- It is clear that the denominator of each term of $A^{m}(S)=2^{m}$.
- Let's investigate the numerators of each term.

PROBLEM 9

- S is $1, x, x^{2}, x^{3}, x^{4}, \ldots$

PROBLEM 9

- S is $1, x, x^{2}, x^{3}, x^{4}, \ldots$
- The numerators of $A^{1}(S)=1+x, x+x^{2}, x^{2}+x^{3}, \ldots$

PROBLEM 9

- S is $1, x, x^{2}, x^{3}, x^{4}, \ldots$
- The numerators of $A^{1}(S)=1+x, x+x^{2}, x^{2}+x^{3}, \ldots$
- The numerators of $A^{2}(S)=1+2 x+x^{2}, x+2 x^{2}+x^{3}, \ldots$

PROBLEM 9

- S is $1, x, x^{2}, x^{3}, x^{4}, \ldots$
- The numerators of $A^{1}(S)=1+x, x+x^{2}, x^{2}+x^{3}, \ldots$
- The numerators of $A^{2}(S)=1+2 x+x^{2}, x+2 x^{2}+x^{3}, \ldots$
- The numerators of $A^{3}(S)=1+3 x+3 x^{2}+x^{3}, \ldots$

PROBLEM 9

- S is $1, x, x^{2}, x^{3}, x^{4}, \ldots$
- The numerators of $A^{1}(S)=1+x, x+x^{2}, x^{2}+x^{3}, \ldots$
- The numerators of $A^{2}(S)=1+2 x+x^{2}, x+2 x^{2}+x^{3}, \ldots$
- The numerators of $A^{3}(S)=1+3 x+3 x^{2}+x^{3}, \ldots$
- The numerator of the $1^{\text {st }}$ term of $A^{m}(S)=(1+x)^{m}$

PROBLEM 9

- S is $1, x, x^{2}, x^{3}, x^{4}, \ldots$
- The numerators of $A^{1}(S)=1+x, x+x^{2}, x^{2}+x^{3}, \ldots$
- The numerators of $A^{2}(S)=1+2 x+x^{2}, x+2 x^{2}+x^{3}, \ldots$
- The numerators of $A^{3}(S)=1+3 x+3 x^{2}+x^{3}, \ldots$
- The numerator of the $1^{\text {st }}$ term of $A^{m}(S)=(1+x)^{m}$
- $A^{m}(S)$ has one fewer term than $A^{m-1}(S)$ and $A^{1}(S)$ has 100 terms

PROBLEM 9

- S is $1, x, x^{2}, x^{3}, x^{4}, \ldots$
- The numerators of $A^{1}(S)=1+x, x+x^{2}, x^{2}+x^{3}, \ldots$
- The numerators of $A^{2}(S)=1+2 x+x^{2}, x+2 x^{2}+x^{3}, \ldots$
- The numerators of $A^{3}(S)=1+3 x+3 x^{2}+x^{3}, \ldots$
- The numerator of the $1^{\text {st }}$ term of $A^{m}(S)=(1+x)^{m}$
- $A^{m}(S)$ has one fewer term than $A^{m-1}(S)$ and $A^{1}(S)$ has 100 terms
- $A^{100}(S)$ has exactly one term.

PROBLEM 9

- S is $1, x, x^{2}, x^{3}, x^{4}, \ldots$
- The numerators of $A^{1}(S)=1+x, x+x^{2}, x^{2}+x^{3}, \ldots$
- The numerators of $A^{2}(S)=1+2 x+x^{2}, x+2 x^{2}+x^{3}, \ldots$
- The numerators of $A^{3}(S)=1+3 x+3 x^{2}+x^{3}, \ldots$
- The numerator of the $1^{\text {st }}$ term of $A^{m}(S)=(1+x)^{m}$
- $A^{m}(S)$ has one fewer term than $A^{m-1}(S)$ and $A^{1}(S)$ has 100 terms
- $A^{100}(S)$ has exactly one term.
- $A^{100}(S)=(1+x)^{100} / 2^{100}=1 / 2^{50}$

PROBLEM 9

- $(1+x)^{100} / 2^{100}=1 / 2^{50}$

PROBLEM 9

- $(1+x)^{100} / 2^{100}=1 / 2^{50}$
- $(1+x)^{2} / 2^{2}=1 / 2$

PROBLEM 9

- $(1+x)^{100} / 2^{100}=1 / 2^{50}$
- $(1+x)^{2} / 2^{2}=1 / 2$
- $(1+x)^{2}=2$

PROBLEM 9

- $(1+x)^{100} / 2^{100}=1 / 2^{50}$
- $(1+x)^{2} / 2^{2}=1 / 2$
- $(1+x)^{2}=2$
- $1+x=\sqrt{ } 2$

PROBLEM 9

- $(1+x)^{100} / 2^{100}=1 / 2^{50}$
- $(1+x)^{2} / 2^{2}=1 / 2$
- $(1+x)^{2}=2$
- $1+x=\sqrt{ } 2$
- $x=\sqrt{ } 2-1$

