NUMBER THEORY WORKSHEET SOLUTIONS

PROBLEM 1

- Let n be a positive integer such that $1 / 2+$ $1 / 3+1 / 7+1 / n$ is an integer. Which of the following statements is not true:
- (A) 2 divides n (B) 3 divides n (C) 6 divides n (D) 7 divides $n(E) n>84$

PROBLEM 1

- Let n be a positive integer such that $1 / 2+$ $1 / 3+1 / 7+1 / n$ is an integer. Which of the following statements is not true:
- (A) 2 divides n (B) 3 divides n (C) 6 divides n (D) 7 divides $n(E) n>84$
- The LCD of $1 / 2,1 / 3,1 / 7$ is $2(3)(7)=42$

PROBLEM 1

- Let n be a positive integer such that $1 / 2+$ $1 / 3+1 / 7+1 / n$ is an integer. Which of the following statements is not true:
- (A) 2 divides n (B) 3 divides n (C) 6 divides n (D) 7 divides $n(E) n>84$
- The LCD of $1 / 2,1 / 3,1 / 7$ is $2(3)(7)=42$
- n must be 42 or a divisor of 42

PROBLEM 1

- Let n be a positive integer such that $1 / 2+$ $1 / 3+1 / 7+1 / n$ is an integer. Which of the following statements is not true:
- (A) 2 divides n (B) 3 divides n (C) 6 divides n (D) 7 divides $n(E) n>84$
- The LCD of $1 / 2,1 / 3,1 / 7$ is $2(3)(7)=42$
- n must be 42 or a divisor of 42
- so $n>84$ is false.
- Answer: E

PROBLEM 2

- For how many positive integers m does there exist at least one positive integer n such that $\mathrm{mn} \leq \mathrm{m}+\mathrm{n}$?

PROBLEM 2

- For how many positive integers m does there exist at least one positive integer n such that $m \mathrm{n} \leq \mathrm{m}+\mathrm{n}$?
- for $n=1, m(1)<m+1$
- For how many positive integers m does there exist at least one positive integer n such that $m n \leq m+n$?
- for $\mathrm{n}=1, \mathrm{~m}(1)<m+1$
- True for all positive integers m
- Answer: Infinite

PROBLEM 3

- For how many positive integers n is $n^{2}-3 n+2$ a prime number?

PROBLEM 3

- For how many positive integers n is $n^{2}-3 n+2$ a prime number?
- $\mathrm{n}^{2}-3 \mathrm{n}+2=(\mathrm{n}-2)(\mathrm{n}-1)$, a product of two integers

PROBLEM 3

- For how many positive integers n is $n^{2}-3 n+2$ a prime number?
- $n^{2}-3 n+2=(n-2)(n-1)$, a product of two integers
- To be prime, one factor = 1, the other factor is a prime

PROBLEM 3

- For how many positive integers n is $n^{2}-3 n+2$ a prime number?
- $\mathrm{n}^{2}-3 \mathrm{n}+2=(\mathrm{n}-2)(\mathrm{n}-1)$, a product of two integers
- To be prime, one factor = 1, the other factor is a prime
- The only value of n that works is 3
- Answer: 1

PROBLEM 4

- How many different integers can be expressed as the sum of three distinct members of the set $\{1,4,7,10,13,16,19\}$?

PROBLEM 4

- How many different integers can be expressed as the sum of three distinct members of the set $\{1,4,7,10,13,16,19\}$?
- each member of the set is one more than a multiple of 3 .

PROBLEM 4

- How many different integers can be expressed as the sum of three distinct members of the set $\{1,4,7,10,13,16,19\}$?
- each member of the set is one more than a multiple of 3 .
- the sum of 3 of them is a multiple of 3 .

PROBLEM 4

- How many different integers can be expressed as the sum of three distinct members of the set $\{1,4,7,10,13,16,19\}$?
- each member of the set is one more than a multiple of 3 .
- the sum of 3 of them is a multiple of 3 .
- smallest sum is $3(4)$, largest is $3(16)$,

PROBLEM 4

- How many different integers can be expressed as the sum of three distinct members of the set $\{1,4,7,10,13,16,19\}$?
- each member of the set is one more than a multiple of 3 .
- the sum of 3 of them is a multiple of 3 .
- smallest sum is 3(4), largest is 3(16),
- all intermediate values are possible.
- Answer: 13

PROBLEM 5

- The number $25^{64} \cdot 64^{25}$ is the square of a positive integer N. In decimal representation, what is the sum of the digits of N ?

PROBLEM 5

- The number $25^{64} \cdot 64^{25}$ is the square of a positive integer N. In decimal representation, what is the sum of the digits of N ?
- $N=5^{64} \cdot 8^{25}=5^{64} \cdot 2^{75}=10^{64} \cdot 2^{11}$

PROBLEM 5

- The number $25^{64} \cdot 64^{25}$ is the square of a positive integer N. In decimal representation, what is the sum of the digits of N ?
- $N=5^{64} \cdot 8^{25}=5^{64} \cdot 2^{75}=10^{64} \cdot 2^{11}$
- 10^{64} just contributes 64 zeros, it doesn't affect the sum of digits

PROBLEM 5

- The number $25^{64} \cdot 64^{25}$ is the square of a positive integer N.
In decimal representation, what is the sum of the digits of N ?
- $N=5^{64} \cdot 8^{25}=5^{64} \cdot 2^{75}=10^{64} \cdot 2^{11}$
- 10^{64} just contributes 64 zeros, it doesn't affect the sum of digits
- $2^{11}=2048$
- Answer: 14

PROBLEM 6

- The sum of the two 5-digit numbers AMC10 and AMC12 is 123422. What is $A+M+C$?

PROBLEM 6

- The sum of the two 5-digit numbers AMC10 and AMC12 is 123422. What is $A+M+C$?
- The sum of the last 2 digits is 22 , the last 2 digits of the sum

PROBLEM 6

- The sum of the two 5-digit numbers AMC10 and AMC12 is 123422. What is $A+M+C$?
- The sum of the last 2 digits is 22 , the last 2 digits of the sum
- So $2(A M C)=1234$, the first 4 digits of the sum

PROBLEM 6

- The sum of the two 5-digit numbers AMC10 and AMC12 is 123422. What is $A+M+C$?
- The sum of the last 2 digits is 22 , the last 2 digits of the sum
- So $2(A M C)=1234$, the first 4 digits of the sum
- $A M C=617$
- Answer: 14

PROBLEM 7

- The Contest Chair noticed that his airport parking receipt had digits of the form bbcac, where $0 \leq a<b<c \leq 9$, and b was the average of a and c. How many 5-digit numbers satisfy all these properties?

PROBLEM 7

- The Contest Chair noticed that his airport parking receipt had digits of the form bbcac, where $0 \leq a<b<c \leq 9$, and b was the average of a and c. How many 5-digit numbers satisfy all these properties?
- Given any a and c, there is only one value of b that works.

PROBLEM 7

- The Contest Chair noticed that his airport parking receipt had digits of the form bbcac, where $0 \leq a<b<c \leq 9$, and b was the average of a and c. How many 5-digit numbers satisfy all these properties?
- Given any a and c, there is only one value of b that works.
- a and c are both odd or both even, in order for b to be integral

PROBLEM 7

- The Contest Chair noticed that his airport parking receipt had digits of the form bbcac, where $0 \leq a<b<c \leq 9$, and b was the average of a and c. How many 5-digit numbers satisfy all these properties?
- Given any a and c, there is only one value of b that works.
- a and c are both odd or both even, in order for b to be integral
- Looking at the even values: a $=0$ has 4 possible values of $c, a=2$ has $3, a=4$ has $2, a=6$ has 1

PROBLEM 7

- The Contest Chair noticed that his airport parking receipt had digits of the form bbcac, where $0 \leq a<b<c \leq 9$, and b was the average of a and c. How many 5-digit numbers satisfy all these properties?
- Given any a and c, there is only one value of b that works.
- a and c are both odd or both even, in order for b to be integral
- Looking at the even values: a $=0$ has 4 possible values of $c, a=2$ has $3, a=4$ has $2, a=6$ has 1
- There are a total of 10 even possible values of a and c.

PROBLEM 7

- The Contest Chair noticed that his airport parking receipt had digits of the form bbcac, where $0 \leq a<b<c \leq 9$, and b was the average of a and c. How many 5-digit numbers satisfy all these properties?
- Given any a and c, there is only one value of b that works.
- a and c are both odd or both even, in order for b to be integral
- Looking at the even values: a $=0$ has 4 possible values of $c, a=2$ has $3, a=4$ has $2, a=6$ has 1
- There are a total of 10 even possible values of a and c.
- Similarly, there are 10 odd possible values of a and c.
- Answer: 20

PROBLEM 8

- What is the difference between the sum of the first 2003 even counting numbers and the sum of the first 2003 odd counting numbers?

PROBLEM 8

- What is the difference between the sum of the first 2003 even counting numbers and the sum of the first 2003 odd counting numbers?
- Each even counting number is one more than the corresponding odd counting number (e.g., 2 and 1, 4 and 3, 6 and 5).

PROBLEM 8

- What is the difference between the sum of the first 2003 even counting numbers and the sum of the first 2003 odd counting numbers?
- Each even counting number is one more than the corresponding odd counting number (e.g., 2 and 1, 4 and 3, 6 and 5).
- There are 2003 pairs of numbers, each with a difference of 1.
- Answer: 2003

PROBLEM 9

- Let n be the largest integer that is the product of exactly 3 distinct prime numbers, d, e and 10d + e, where d and e are single digits. What is the sum of the digits of n ?

PROBLEM 9

- Let n be the largest integer that is the product of exactly 3 distinct prime numbers, d, e and 10d + e, where d and e are single digits. What is the sum of the digits of n ?
- The prime digits are $2,3,5,7$.

PROBLEM 9

- Let n be the largest integer that is the product of exactly 3 distinct prime numbers, d, e and 10d + e, where d and e are single digits. What is the sum of the digits of n ?
- The prime digits are 2, 3, 5, 7 .
- Because we are looking for the largest prime number with prime digits, try $\mathrm{d}=7$, the largest prime digit.

PROBLEM 9

- Let n be the largest integer that is the product of exactly 3 distinct prime numbers, d, e and 10d + e, where d and e are single digits. What is the sum of the digits of n ?
- The prime digits are 2, 3, 5, 7 .
- Because we are looking for the largest prime number with prime digits, try $\mathrm{d}=7$, the largest prime digit.
- Then e cannot be 7,5 , or 2 because $77,75,72$ are not prime.

PROBLEM 9

- Let n be the largest integer that is the product of exactly 3 distinct prime numbers, d, e and 10d + e, where d and e are single digits. What is the sum of the digits of n ?
- The prime digits are 2, 3, 5, 7 .
- Because we are looking for the largest prime number with prime digits, try $\mathrm{d}=7$, the largest prime digit.
- Then e cannot be 7,5 , or 2 because $77,75,72$ are not prime.
- e = 3 works because 73 is prime.

PROBLEM 9

- Let n be the largest integer that is the product of exactly 3 distinct prime numbers, d, e and 10d + e, where d and e are single digits. What is the sum of the digits of n ?
- The prime digits are 2, 3, 5, 7 .
- Because we are looking for the largest prime number with prime digits, try $\mathrm{d}=7$, the largest prime digit.
- Then e cannot be 7, 5, or 2 because 77, 75, 72 are not prime.
- e $=3$ works because 73 is prime.
- $7(3)(73)=1533$
- Answer: 12

